Skip to main content

Large Igneous Province

  • Living reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

On Earth, large igneous provinces (LIPs) are defined as “voluminous emplacements of predominantly mafic extrusive and intrusive rock whose origins lie in processes other than ‘normal’ seafloor spreading” (Coffin and Eldholm 1992a, b; Head and Coffin 1997). A revised definition for Earth is “LIPs are magmatic provinces with areal extents >0.1 × 106 km2, igneous volumes >0.1 × 106 km3, and maximum life spans of ~50 Ma that have intraplate tectonic settings or geochemical affinities, and are characterized by igneous pulse(s) of short duration (~1–5 Myr), during which a large proportion (>75 %) of the total igneous volume has been emplaced” (Bryan and Ernst 2008).

Related Terms

Flood basalt province, Flood lava, Trap, Plateau basalt, Continental flood basalt, Ocean basin flood basalt

Description

Laterally extensive flat-lying fields of lava flows (sheet lava flows) (Geikie 1880), produced by flood lavas (very fluid lava flows), with long runout distance that inundate large...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y (1993) Thermal evolution and chemical differentiation of the terrestrial magma ocean. In: Takahashi E, Jeanloz R, Rubie D (eds) Evolution of the Earth and planets. Geophysical monograph 74. IUGG 14. IUGG, Washington, DC, pp 41–55

    Google Scholar 

  • Armann M, Tackley PJ (2012) Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J Geophys Res 117:E12003. doi:10.1029/2012JE004231

    Article  Google Scholar 

  • Baldwin RB (1949) The face of the moon. University of Chicago, Chicago

    Google Scholar 

  • Banks BK, Hansen VL (1999) IntraTessera flood-lava basins (ITBs) constrain timing of crustal plateau structures. Lunar Planet Sci Conf XXX, abstract #2053, Houston

    Google Scholar 

  • Bryan SE, Ernst RE (2008) Revised definition of large igneous provinces (LIPs). Earth Sci Rev 86:175–202. doi:10.1016/j.earscirev.2007.08.008

    Article  Google Scholar 

  • Bryan SE, Ferrari L (2014) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull 125(7/8):1053–1078. doi:10.1130/B30820.1

    Google Scholar 

  • Camp VE (2013) Origin of Columbia River Basalt: passive rise of shallow mantle, or active upwelling of a deep-mantle plume? GSA Spec Pap 497:181–199

    Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sci Lett 99:79–93. doi:10.1016/0012-821X(90)90072-6

    Article  Google Scholar 

  • Coffin MF, Eldholm O (eds) (1991) Large igneous provinces: JOI/USSAC workshop report. The University of Texas at Austin Institute for Geophysics technical report 114

    Google Scholar 

  • Coffin MF, Eldholm O (1992a) Volcanism and continental break-up: a global compilation of large igneous provinces. Geol Soc Lond Spec Publ 68:17–30

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1992b) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36

    Article  Google Scholar 

  • Coffin MF, Duncan RA, Eldholm O, Fitton JG et al (2006) Large igneous provinces and scientific ocean drilling. Oceanography 19(4):150–160

    Article  Google Scholar 

  • Croft SK, Kargel JS, Kirk RL, Moore JM, Schenk PM, Strom RG (1995) The Geology of Triton. In: Cruikshank DP, Metthews MS, Schumann AM (eds) Neptune and Triton. University of Arizona Press, Tucson, pp 879–948

    Google Scholar 

  • Denevi BW, Robinson MS, Solomon SC, Mirchie SL et al (2009) The evolution of Mercury’s crust: a global perspective from MESSENGER. Science 324(5927):613–618. doi:10.1126/science.1172226

    Google Scholar 

  • Elkins-Tanton LT (2008) Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet Sci Lett 271:181–191

    Article  Google Scholar 

  • Ernst RE, Buchan KL (2001) Large mafic magmatic events through time and links to mantle plume-heads. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper, vol 352. Geological Society of America, Boulder

    Google Scholar 

  • Geikie A (1880) The lava-fields of North-western Europe. Nature 23:3–5

    Article  Google Scholar 

  • Greeley R (1977) Basaltic “plains” volcanism. In: Greeley R, King JS (eds) Volcanism in the eastern Snake River plain, Idaho: a comparative planetary geology guidebook. NASA, Washington, DC, pp 23–45

    Google Scholar 

  • Greeley R, Schneid BD (1991) Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254:996–998

    Article  Google Scholar 

  • Hansen VL (2007) LIPs on Venus. Chem Geol 241:354–374

    Article  Google Scholar 

  • Head JW (1975) Lunar mare deposits: areas, volumes, sequence, and implication for melting in source areas. Conference on origins of mare basalts and their implications for lunar evolution. LPI contribution, abstract #234, Houston

    Google Scholar 

  • Head JW III, Coffin MF (1997) Large igneous provinces: a planetary perspective. In: Mahoney JJ, Coffin MF, Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic and planetary flood volcanism. Geophysical monograph, vol 100. American Geophysical Union, Washington, DC, pp 411–436

    Google Scholar 

  • Head JW III, Wilson L (1991) Absence of large shield volcanoes and calderas on the moon: consequence of magma transport phenomena? Geophys Res Lett 18(11):2121–2124

    Article  Google Scholar 

  • Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600

    Google Scholar 

  • Ivanov MA, Korteniemi J, Kostama V-P, Aittola M, Raitala J, Glamoclija M, Marinangeli L, Neukum G (2005) Major episodes of the hydrologic history in the region of Hesperia Planum, Mars. J Geophys Res 110:E12S21. doi:10.1029/2005JE002420

    Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA Jr, Milazzo MP, McEwen AS et al (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243

    Article  Google Scholar 

  • Jones AP, Price GD, Price NJ, DeCarli PS, Clegg RA (2002) Impact induced melting and the development of large igneous provinces. Earth Planet Sci Lett 202:551–561. doi:10.1016/S0012-821X(02)00824-5

    Article  Google Scholar 

  • Kargel JS (1995) Cryovolcanism on the icy satellites. Earth Moon Planet 67(1–3):101–113

    Google Scholar 

  • Keszthelyi L, McEwen AS (2007) Comparison of flood lavas on Earth and Mars. In: Keszthelyi L, McEwen AS (eds), vol 5. Cambridge Planetary Science, Cambridge/New York, pp 126–150

    Google Scholar 

  • Keszthelyi L, McEwen AS, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood lavas. J Geophys Res 105:15027–15049

    Article  Google Scholar 

  • Keszthelyi L, Self S, Thordarson T (2006) Flood lavas on Earth, Io and Mars. J Geol Soc 163(2):253–264

    Article  Google Scholar 

  • Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112

    Article  Google Scholar 

  • McEwen AS, Malin MC, Carr MH, Hartmann WK (1999) Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397:584–586

    Article  Google Scholar 

  • Medlicott HB, Blanford WT (1879) A manual of the geology of India. The Government of India, Calcutta

    Google Scholar 

  • Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Volcanic rifted margins. Geological Society of America special paper, vol 362. Geological Society of America, Boulder, pp 1–14

    Chapter  Google Scholar 

  • Meyer R, van Wijk J, Gernigon L (2007) The North Atlantic igneous province: a review of models for its formation. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes, Geological Society of America special paper, vol 430. Geological Society of America, Boulder, pp 525–552. doi:10.1130/2007.2430(26)

    Chapter  Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43. doi:10.1038/230042a0

    Article  Google Scholar 

  • Pappalardo RT, Head JW (1999) Europa: role of the ductile layer. Lunar Planet Sci Conf XXX, abstract #1967, Houston

    Google Scholar 

  • Parmentier EM, Hess PC (1992) Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys Res Lett 19:2015–2018

    Article  Google Scholar 

  • Peate DW (1997) The Parana-Etendeka province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. Geophysical Monograph, vol 100. Geological Society of America, Boulder, pp 217–245

    Google Scholar 

  • Rogers GC (1982) Oceanic plateaus as meteorite impact signatures. Nature 299:341–342. doi:10.1038/299341a0

    Article  Google Scholar 

  • Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Ann Rev Earth Planet Sci 26:81–110

    Article  Google Scholar 

  • Solomatov V (2007) Magma oceans and primordial mantle differentiation. In: Schubert G (ed) Treatise on geophysics 9: evolution of the Earth. Heidelberg: Elsevier, Amsterdam, Boston 91–120

    Google Scholar 

  • Tanaka KL, Isbell NK, Scott DH, Greeley R, Guest JE (1988) The resurfacing history of mars: a synthesis of digitized, Viking-based geology. Lunar Planet Sci Conf 18:665–678, Houston

    Google Scholar 

  • Urey HC (1952) The planets, their origin and development. Yale Univ Press, New Haven

    Google Scholar 

  • Vanderkluysen L, Mahoney JJ, Hooper PR, Sheth HC, Ray R (2011) The feeder system of the Deccan Traps (India): insights from dike geochemistry. J Petrol 52(2):315–343

    Article  Google Scholar 

  • Vaughan WM, Head JW, Wilson L, Hess PC (2013) Geology and petrology of enormous volumes of impact melt on the Moon: a case study of the Orientale basin impact melt sea. Icarus 223:749–765

    Article  Google Scholar 

  • von Richthofen F (1868) Principles of the natural system of volcanic rocks. Mem Cal Acad Sci 1(2):39–133

    Google Scholar 

  • Warren PH (1985a) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240

    Article  Google Scholar 

  • Warren PH (1985b) Earth’s primordial differentiation, and its after-effects. In: Lunar and Planetary Institute workshop on the early Earth: the interval from accretion to the older archean, pp 79–81

    Google Scholar 

  • Washington HS (1922) Deccan traps and the other plateau basalts. Geol Soc Am Bull 33(4):765–804

    Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94(B6):7685–7729. doi:10.1029/JB094iB06p07685

    Article  Google Scholar 

  • Whitten JL, Head JW, Murchie SL, Blewett DT et al. (2012) Intercrater plains on Mercury: topographic assessment with messenger data. 43rd Lunar Planet Sci Conf, abstract #1479, Houston

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Williams DA et al (2009) The Circum-Hellas volcanic province, Mars: overview. Planet Space Sci 57:895–916

    Article  Google Scholar 

  • Winterer J (ed) (1991) Global paleoceanography, paleoclimate, and paleoenvironment. In: Coffin MF, Eldholm O (eds) Large igneous provinces: JOI/USSAC workshop report. The University of Texas at Austin Institute for Geophysics technical report 114. pp. 47–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Kereszturi, Á., Cornet, T., Illés-Almár, E. (2014). Large Igneous Province. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_215-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_215-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics