Skip to main content

In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties

  • Protocol
  • First Online:
Book cover Genotype Phenotype Coupling

Abstract

VNAR domains are the binding regions of new antigen receptor proteins (IgNAR) which are unique to sharks, skates, and rays (Elasmobranchii). Individual VNAR domains can bind antigens independently and are the smallest reported adaptive immune recognition entities in the vertebrate kingdom. Sharing limited sequence homology with human immunoglobulin domains, their development and use as biotherapeutic agents require that they be humanized to minimize their potential immunogenicity. Efforts to humanize a human serum albumin (HSA)-specific VNAR, E06, resulted in protein molecules that initially had undesirable biophysical properties or reduced affinity for cognate antigen. Two lead humanized anti-HSA clones, v1.10 and v2.4, were subjected to a process of random mutagenesis using error-prone PCR. The mutated sequences for each humanized VNAR variant were screened for improvements in affinity for HSA and biophysical properties, achieved without a predicted increase in overall immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  Google Scholar 

  2. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390

    Article  CAS  Google Scholar 

  3. McCafferty J, Griffiths AD, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552

    Article  CAS  Google Scholar 

  4. Lowman HB, Bass SH, Simpson N et al (1991) Selecting high-affinity binding proteins by monovalent phage display. Biochemistry 30(45):10832–10838

    Article  CAS  Google Scholar 

  5. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2(1):28–33

    Article  CAS  Google Scholar 

  6. Cirino PC, Mayer KM, Umeno D (2003) Generating mutant libraries using error-prone PCR. In: Anonymous directed evolution library creation. Springer, New York, pp 3–9

    Chapter  Google Scholar 

  7. Gram H, Marconi LA, Barbas CF 3rd et al (1992) In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proc Natl Acad Sci U S A 89(8):3576–3580

    Article  CAS  Google Scholar 

  8. Deng SJ, MacKenzie CR, Sadowska J et al (1994) Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. J Biol Chem 269(13):9533–9538

    CAS  PubMed  Google Scholar 

  9. Stephens DE, Singh S, Permaul K (2009) Error-prone PCR of a fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol Lett 293(1):42–47

    Article  CAS  Google Scholar 

  10. Malm M, Kronqvist N, Lindberg H et al (2013) Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification. PLoS One 8(5):e62791

    Article  CAS  Google Scholar 

  11. Zhao N, Schmitt MA, Fisk JD (2016) Phage display selection of tight specific binding variants from a Hyperthermostable Sso7d scaffold protein library. FEBS J 283(7):1351–1367

    Article  CAS  Google Scholar 

  12. Zahnd C, Spinelli S, Luginbuhl B et al (2004) Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem 279(18):18870–18877. https://doi.org/10.1074/jbc.M309169200

    Article  CAS  PubMed  Google Scholar 

  13. Ye J, Wen F, Xu Y et al (2015) Error-prone pcr-based mutagenesis strategy for rapidly generating high-yield influenza vaccine candidates. Virology 482:234–243

    Article  CAS  Google Scholar 

  14. Reichert JM (2017) Antibodies to watch in 2017. In: Anonymous MAbs, vol 9. Taylor & Francis, Milton Park, Didcot, p 167

    Google Scholar 

  15. Ian L (2017) Pharma R&D Annual Review. Informa UK Ltd Mortimer House, 37-41 Mortimer Street, London W1T3JH, UK

    Google Scholar 

  16. Hey T, Fiedler E, Rudolph R et al (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23(10):514–522

    Article  CAS  Google Scholar 

  17. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255

    Article  CAS  Google Scholar 

  18. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  Google Scholar 

  19. Kovaleva M, Ferguson L, Steven J et al (2014) Shark variable new antigen receptor biologics–a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 14(10):1527–1539

    Article  CAS  Google Scholar 

  20. Kovalenko OV, Olland A, Piche-Nicholas N et al (2013) Atypical antigen recognition mode of a shark immunoglobulin new antigen receptor (IgNAR) variable domain characterized by humanization and structural analysis. J Biol Chem 288(24):17408–17419. https://doi.org/10.1074/jbc.M112.435289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dooley H, Flajnik MF, Porter AJ (2003) Selection and characterization of naturally occurring single-domain (IgNAR) antibody fragments from immunized sharks by phage display. Mol Immunol 40(1):25–33

    Article  CAS  Google Scholar 

  22. Finlay WJ, Cunningham O, Lambert MA et al (2009) Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol 388(3):541–558

    Article  CAS  Google Scholar 

  23. Winter G, Griffiths AD, Hawkins RE et al (1994) Making antibodies by phage display technology. Annu Rev Immunol 12(1):433–455

    Article  CAS  Google Scholar 

  24. Griffiths AD, Williams SC, Hartley O et al (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13(14):3245–3260

    Article  CAS  Google Scholar 

  25. Hawkins RE, Russell SJ, Winter G (1992) Selection of phage antibodies by binding affinity: mimicking affinity maturation. J Mol Biol 226(3):889–896

    Article  CAS  Google Scholar 

  26. Marks JD, Hoogenboom HR, Bonnert TP et al (1991) By-passing immunization: human antibodies from V-gene libraries displayed on phage. J Mol Biol 222(3):581–597

    Article  CAS  Google Scholar 

  27. Steven J, Müller MR, Carvalho MF et al (2017) In vitro maturation of a humanized shark Vnar domain to improve its biophysical properties to facilitate clinical development. Front Immunol 8:1361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obinna C. Ubah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steven, J. et al. (2020). In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2070. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9853-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9853-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9852-4

  • Online ISBN: 978-1-4939-9853-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics