Skip to main content

Bioavailability and Its Importance to Bioremediation

  • Chapter
Bioremediation

Abstract

The high cost of remediation has driven interest in developing a better understanding of bioremediation and the application of bioremediation technologies. The success of any bioremediation technology depends on a number of factors including site characteristics, environmental factors (e.g., temperature, pH, electron acceptor, nutrients), the nature of the contamination, whether appropriate biodegradative genes are present, and the bioavailability of the contaminants to degrading microorganisms within the site. To date, biodegradation research has focused primarily on the impact of environmental factors and biodegradative capacity. However, while inherent degradative capability and suitable environmental factors are certainly necessary, the importance of bioavailability to biodegradation also needs to be addressed. This is especially true for subsurface environments, where bioavailability may often control the occurrence and rate of biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Tahhan, R.A. and Miller-Maier, R.M. (1998) Effect of rhamnolipid on fatty acid content and cell surface hydrophobicity of Pseudomonas aeruginosa, Appl Environ. Microbiol., submitted.

    Google Scholar 

  • Aronstein, B.N. and Alexander, M. (1992) Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of aquifer sands and soil slurries, Environ. Toxicol. Chem. 11, 1227–1233.

    Article  CAS  Google Scholar 

  • Aronstein, B.N., Calvillo, Y.M. and Alexander, M. (1991) Effect of surfactants at low concentration on the desorption and biodegradation of sorbed aromatic compounds in soil, Environ. Sci. Technol. 25, 1728–1731.

    Article  CAS  Google Scholar 

  • Atlas, R.M. (1981) Microbial biodegradation of petroleum hydrocarbons: An environmental perspective, Micro. Reviews 45, 180–209.

    CAS  Google Scholar 

  • Bai, G., Brusseau, M.L. and Miller, R.M. (1997) The influence of rhamnolipid biosurfactant on the transport of bacteria through a sandy soil, Appl. Environ. Microbiol. 63, 1866–1873.

    CAS  Google Scholar 

  • Bodour, A.A. and Miller-Maier, R.M. (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms, J. Microbiol. Methods in press.

    Google Scholar 

  • Breuil, C. and Kushner, D.J. (1980) Effects of lipids, fatty acids, and other detergents on bacterial utilization of hexadecane, Can. J. Microbiol. 26, 223–231.

    Article  CAS  Google Scholar 

  • Brock, T.D. and Madigan, M.T. (1991) Biology of Microorganisms, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Brusseau, M.L., Jessup, R.E. and Rao, P.S.C. (1991a) Nonequilibrium sorption of organic chemicals: Elucidation of rate-limiting processes, Environ. Sci. Technol. 25, 134–142.

    Article  CAS  Google Scholar 

  • Brusseau, M.L., Larsen, T. and Christensen, T.H. (199 lb) Rate-limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials, Water Resour. Res. 27, 1137–1145.

    Google Scholar 

  • Brusseau, M.L., Miller, R.M., Zhang, Y., Wang, X. and Bai, G.-Y. (1995) Biosurfactant and cosolvent enhanced remediation of contaminated media, in D.A. Sabatini, R.C. Knox and J.H. Harwell (eds.), Surfactant Enhanced Subsurface Remediation: Emerging Technologies, American Chemical Society, Washington, DC, pp. 82–94.

    Chapter  Google Scholar 

  • Buxton, D.S. and Green, R.E. (1987), Desorption and leachability of DBCP residues in soils, in Agronomy Abstracts, Amer. Soc. Agron., Madison, Wisconsin, p. 167.

    Google Scholar 

  • Chakravarty, M., Amin, P.M., Singh, H.D., Baruah, J.N. and Iyengar, M.S. (1972) A kinetic model for microbial growth on solid hydrocarbons, Biotech. Bioengrg. 14, 61–63.

    Article  Google Scholar 

  • Churchill, S.A., Griffin, R.A., Jones, L.P. and Churchill, P.F. (1995) Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant, J. Environ. Qual. 24, 19–28.

    Article  CAS  Google Scholar 

  • Coates, J.T. and Elzerman, A.W. (1986) Desorption kinetics for selected PCB congeners from river sediments, J. Contam. Hydrol. 1, 191–210.

    Article  CAS  Google Scholar 

  • Cooper, D.G. and Paddock, D.A. (1984) Production of a biosurfactant from Torulopsis bombicola, Appl. Environ. Microbiol. 47, 173–176.

    CAS  Google Scholar 

  • Crocker, F.H., Guerin, W.F. and Boyd, S.A. (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay, Environ. Sci. Technol. 29, 2953–2958.

    Article  CAS  Google Scholar 

  • Dablow, J., Hicks, R. and Cacciatore, D. (1995) Steam injection and enhanced bioremediation of heavy fuel oil contamination, in J.A. Kittel and H.J. Reisinger (eds.), Applied Bioremediation of Petroleum Hydrocarbons, R.E. Hinchee, Battelle Press, Columbus, pp. 115–121.

    Google Scholar 

  • Desai, J.D. and Banat, J.D. (1997) Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev. 61, 47–64.

    CAS  Google Scholar 

  • Ducreaux, J., Baviere, M., Seabra, P., Razakarisoa, O., Shafer, G. and Arnaud, C. (1995) Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites, in R.E. Hinchee, J.A. Kittel and H.J. Reisinger (eds.), Applied Bioremediation of Petroleum Hydrocarbons, Battelle Press, Columbus, pp. 435–443.

    Google Scholar 

  • Environmental Protection Agency (1991) Summary report: High-priority research in bioremediation, presented at the Bioremediation Research Needs Workshop, April 15–16, 1991, Washington, DC.

    Google Scholar 

  • Falatko, D.M. and Novak, J.T. (1992) Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons, Water Environ. Res. 64, 163–169.

    Article  CAS  Google Scholar 

  • Fiechter, A. (1992) Biosurfactants: Moving towards industrial application, Trends Biotech. 10, 208–217.

    Article  CAS  Google Scholar 

  • Fleming, J.T., Sanseverino, J. and Sayler, G.S. (1993) Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites, Environ. Sci. Technol. 27, 1068–1074.

    Article  CAS  Google Scholar 

  • Fogel, S., Lancione, R. and Sewall, A. (1981), A Literature and Laboratory Investigation of the Influence of Water Solubility on the Biodegradation of Organic Chemicals US Environmental Protection Agency Report 560/5–82–015, 1–21.

    Google Scholar 

  • Foght, J.M., Gutnick, D.L. and Westlake, D.W.S. (1989) Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures, App!. Environ. Microbiol. 55, 36–42.

    CAS  Google Scholar 

  • Ghosh, M.M., Yeom, I.T., Shi, Z., Cox, C.D. and Robinson, K.G. (1995) Surfactant-enhanced bioremediation of PAH- and PCB-contaminated soils, in C.M. Vogel and F.J. Brockman (eds.), Microbial Processes for Bioremediation, R.E. Hinchee, Battelle Press, Columbus, pp. 15–23.

    Google Scholar 

  • Graves, D. and Leavitt, M. (1991) Petroleum biodegradation in soil: The effect of direct application of surfactants, Remediation, Spring, 147–166.

    Google Scholar 

  • Greer, L.E. and Shelton, D.R. (1992) Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil, Appl. Environ. Microbiol. 58, 1459–1465.

    CAS  Google Scholar 

  • Guerin, W.F. and Boyd, S.A. (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl Environ. Microbiol. 58, 1142–1152.

    CAS  Google Scholar 

  • Guha, S. and Jaffe, P.R. (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants, Environ. Sci. Technol. 30, 1382–1391.

    Article  CAS  Google Scholar 

  • Gutnick, D.L. and Rosenberg, E. (1977) Oil tankers and pollution: A microbiological approach, Ann. Rev. Microbiol. 31, 379–397.

    Article  CAS  Google Scholar 

  • Heitzer, A., Webb, O.F., Thonnard, J.E. and Sayler, G.S. (1992) Specific and quantitative assessment of naphthalene and salicyclate bioavailability by using a bioluminescent catabolic reporter bacterium, App!. Environ. Microbiol. 58, 1839–1846.

    CAS  Google Scholar 

  • Heitzer, A., Malachowdky, K., Thonnard, J.E., Bienkowdki, P.R., White, D.C. and Sayler, G.S. (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium, App!. Environ. Microbiol. 60, 1487–1494.

    CAS  Google Scholar 

  • Herman, D.C., Lenhard, R.J. and Miller, R.M. (1997a) Formation and removal of hydrocarbon residual in porous media: effects of bacterial biomass and biosurfactants, Environ. Sci. Technol. 31, 1290–1294.

    Article  CAS  Google Scholar 

  • Herman, D.C., Zhang, Y. and Miller, R.M. (1997b) Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions, App!. Environ. Microbiol. 63, 3622–3627.

    CAS  Google Scholar 

  • Hiramoto, M., Ohtake, H. and Toda, K. (1989) A kinetic study of total degradation of 4chlorobiphenyl by a two-step culture of Arthrobacter and Pseudomonas strains, J. Ferm. Bioengrg. 68, 68–70.

    Article  CAS  Google Scholar 

  • Hodson, R.E., Dustman, W.A., Garg, R.P. and Moran, M.A. (1995) In situ PCR for the visualization of microscale distribution of specific genes and gene products in prokaryotic communities, App!. Environ. Micro. 61, 4076–4082.

    Google Scholar 

  • Hommel R.F. and Ratledge, C. (1993) Biosynthetic mechanisms of low molecular weight surfactants and their precursor molecules, in N. Kosaric (ed.), Biosurfactants; Production, Properties, Applications, Marcel Dekker, New York, pp. 3–63.

    Google Scholar 

  • Ito, S. and Inoue, S. (1982) Growth of yeasts on alkanes with sophorolipids, Appl. Environ. Microbiol. 43, 1278–1283.

    CAS  Google Scholar 

  • Jain, D.K., Lee, H. and Trevors, J.T. (1992) Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil, J. Indust. Microbiol. 10, 87–93.

    Article  Google Scholar 

  • Jeffrey, W.H., Nazaret, S. and Von Haven, R. (1994) Improved method for recovery of mRNA from aquatic samples and its application to detection of mer expression, Appl. Environ. Microbiol. 60, 1814–1821.

    CAS  Google Scholar 

  • Käppeli, O., Müller, M. and Fiechter, A. (1978) Chemical and structural alterations at the cell surface of Candida tropicalis induced by hydrocarbon substrate, J. Bac. 133, 952–958.

    Google Scholar 

  • Karickhoff, S.W. and Morris, K.R. (1985) Sorption dynamics of hydrophobic pollutants in sediment suspensions, Environ. Toxic. Chem. 4, 469–479.

    Article  CAS  Google Scholar 

  • Kelsey, J.W., Kottler, B.D. and Alexander, M. (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals, Environ. Sci. Technol. 31, 214–217.

    Article  CAS  Google Scholar 

  • Kennedy, R.S., Finnerty, W.R., Sudarsanan, K. and Young, R.A. (1975) Microbial assimilation of hydrocarbons, Arch. Microbiol. 102, 75–83.

    Article  CAS  Google Scholar 

  • Killham, K., Amato, M. and Ladd, J.N. (1993) Effect of substrate location in soil and soil pore-water regime on carbon turnover, Soil Biol. Biochem. 25, 57–62.

    Article  CAS  Google Scholar 

  • Klevens, H. (1954) Solubilization of polycyclic hydrocarbons, J. Phys. Colloid Chem. 54, 283–298.

    Google Scholar 

  • Knox, R.C., Sabatini, D.A. and Canter, L.W. (1993) Subsurface Transport and Fate Processes, Lewis Publishers, Boca Raton, Florida, pp. 55–112.

    Google Scholar 

  • Lang, S. and Wagner, F. (1987) Structure and properties of biosurfactants, in N. Kosaric, W.L. Cairns and N.C.C. Gray (eds.), Biosurfactants and Biotechnology, Marcel Dekker, New York, pp. 21–45.

    Google Scholar 

  • McCall, P.J. and Agin, G.L. (1985) Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxic. Chem. 4, 37–44.

    Article  CAS  Google Scholar 

  • Meighen, E.A. (1991) Molecular biology of bacterial bioluminescence, Microbiol. Rev. 55, 123–143.

    CAS  Google Scholar 

  • Miller, R.M. (1995) Surfactant-enhanced bioavailability of slightly soluble organic compounds, in H. Skipper and R. Turco (eds.), Bioremediation — Science Applications Soil Science Society of America, Special Publication, Madison, Wisconsin, pp. 33–54.

    Google Scholar 

  • Miller, M.E. and Alexander, M. (1991) Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension, Environ. Sci. Technol. 25, 240–245.

    Article  CAS  Google Scholar 

  • Miller, R.M. and Bartha, R. (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes, Appl. Environ. Microbiol. 55, 269–274.

    CAS  Google Scholar 

  • Miura, Y., Okazaki, M., Hamada, S., Murakawa, S. and Yugen, R. (1977) Assimilation of liquid hydrocarbon by microorganisms I Mechanism of hydrocarbon uptake, Biotech. Bioengrg. 19, 701–714.

    Article  CAS  Google Scholar 

  • Nakahara, T., Erickson, L.E. and Gutierrez, J.R. (1977) Characteristics of hydrocarbon uptake in cultures with two liquid phases, Biotech. Bioengrg. 19, 9–25.

    Article  CAS  Google Scholar 

  • National Research Council (1993) In Situ Bioremediation: When Does it Work? National Academy Press, Washington, DC.

    Google Scholar 

  • Neu, T.R. (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces, Microbiol. Rev. 60, 151–166.

    CAS  Google Scholar 

  • Novak, J.M., Jayachandran, K., Moorman, T.B. and Weber, J.B. (1995) Sorption and binding of organic compounds in soils and their relation to bioavailability, in H. Skipper and R. Turco, (eds.), Bioremediation — Science Applications, Soil Science Society of America, Special Publication, Madison, Wisconsin, pp. 13–32.

    Google Scholar 

  • Oberbremer, A. and Müller-Hurtig, R. (1989) Aerobic stepwise hydrocarbon degradation and formation of biosurfactants by an original soil population in a stirred reactor, Appl. Microbiol. Biotechnol. 31, 582–586.

    Article  CAS  Google Scholar 

  • Oberbremer, A., Müller-Hurtig, R. and Wagner, F. (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor, Appl. Microbiol. Biotechnol. 32, 485–489.

    Article  CAS  Google Scholar 

  • Ogram, A., Sun, W., Brockman, F.J. and Fredrickson, J.K. (1995) Isolatin and characterization of RNA from low-biomass deep-subsurface sediments, Appl. Environ. Microbiol. 61, 763–768.

    CAS  Google Scholar 

  • Ogunseitan O.A. and Olsen, B.H. (1993) Effect of 2-hydroxybenzoate on the rate of naphthalene mineralization in soil, App!. Microbiol Biotechnol. 38, 799–807.

    Article  CAS  Google Scholar 

  • Providenti, M.A., Flemming, C.A., Lee, H. and Trevors, J.T. (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries, FEMS Microbiol. Eco!. 17, 15–26.

    Article  CAS  Google Scholar 

  • Rao, P.S.C., Davidson, J.M., Jessup, R.E. and Selim, H.H. (1979) Evaluation of conceptual models for describing non-equilibrium adsorption-desorption of pesticides during steady flow in soils, Soil Sci. Soc. Amer. J. 43, 22–28.

    Article  CAS  Google Scholar 

  • Ramaswami, A. and Luthy, R.G. (1997) Measuring and modeling physicochemical limitations to bioavailability and biodegradation, in C.J. Hurst (ed.), Manual of Environmenal Microbiology, ASM Press, Washington, DC, pp. 721–729.

    Google Scholar 

  • Robinson, K.G., Farmer, W.S. and Novak, J.T. (1990) Availability of sorbed toluene in soils for biodegradation by acclimated bacteria, Wat. Res. 24, 345–350.

    Article  CAS  Google Scholar 

  • Rosenberg, E. (1986) Microbial surfactants. Crit. Rev. Biotechnol. 3, 109–132.

    Article  CAS  Google Scholar 

  • Rosenberg, E., Gutnick, D.L. and Rosenberg, E. (1980) Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity, FEMS Micro. Lett. 9, 29–33.

    Article  CAS  Google Scholar 

  • Rosenberg, E., Bayer, E.A. Delarea, J. and Rosenberg, E. (1982) Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane, Appl. Environ. Microbiol. 44, 929–937.

    CAS  Google Scholar 

  • Roszak, D.B. and Colwell, R. (1987) Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51, 365–379.

    CAS  Google Scholar 

  • Sanseverino, J., Applegate, B.M., Henry King, J.M. and Sayler, G.S. (1993) Plasmid mediated mineralization of naphthalene, phenanthrene anthracene, App!. Environ. Microbiol. 59, 1931–1937.

    CAS  Google Scholar 

  • Scow, K. and Alexander, M. (1992) Effect of diffusion on the kinetics of biodegradation: Experimental results with synthetic aggregates, Soil Sci. Soc. Amer. J. 56, 128–134.

    Article  CAS  Google Scholar 

  • Selifonova, O.V. and Eaton, R.W. (1996) Use of an ipb-lux fusion to study regulation of the isopropyl-benzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment, Appl. Environ. Microbiol. 62, 778–783.

    CAS  Google Scholar 

  • Selfinova, O.V., Burlage, R. and Barkay, T. (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment, App!. Environ. Microbiol. 59, 3083–3090.

    Google Scholar 

  • Singer, M. and Finnerty, W. (1984) Microbial metabolism of straight-chain and branched alkanes, in R. Atlas (ed.), Petroleum Microbiology, MacMillan, New York, pp. 1–59.

    Google Scholar 

  • Steinberg, S.M., Pignatello, J.J. and Sawhney, B.L. (1987) Persistence of 1,2-dibromomethane in soils: Entrapment in intraparticle micropores, Environ. Sci. Technol. 21, 1201–1208.

    Article  CAS  Google Scholar 

  • Syldatk, C. and Wagner, F. (1987) Production of biosurfactants, in N. Kosaric, W.L. Cairns and N.C.C. Gray (eds.), Biosurfactants and Biotechnology, Marcel Dekker, New York. pp. 89–120.

    Google Scholar 

  • Thai, L.T. (1993) Solubilization and biodegradation of octadecane in the presence of nonionic surfactants, M.S. Thesis, University of Minnesota.

    Google Scholar 

  • Thibault, S.L., Anderson, M. and Frankenberger Jr., W.T. (1996) Influence of surfactants on pyrene desorption and degradation in soils, App!. Environ. Microbiol. 62, 283–287.

    CAS  Google Scholar 

  • Tsai, Y.-L., Park, M.J. and Olson, B.H. (1991) Rapid method for direct extraction of mRNA from seeded soils, Appl. Environ. Microbiol. 57, 765–768.

    CAS  Google Scholar 

  • Volkering, F., Breure, A.M. vanAndel, J.G. and Rulkens, W.H. (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons, Appl. Environ. Microbio1. 61, 1699–1705.

    CAS  Google Scholar 

  • Willardson, B.M., Wilkins, J.F., Rand, T.A., Schupp, J.M., Hill, K.K., Keim, P. and Jackson, P.J. (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants, Appl. Environ. Microbiol. 64, 1006–1012.

    CAS  Google Scholar 

  • Zhang, Y. and Miller, R.M. (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant), Appl. Environ. Microbiol. 58, 3276–3282.

    CAS  Google Scholar 

  • Zhang, Y. and Miller, R.M. (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Appl. Environ. Microbiol. 60, 2101–2106.

    CAS  Google Scholar 

  • Zhang, Y. and Miller, R.M. (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes, Appl. Environ. Microbiol. 61, 2247–2251.

    CAS  Google Scholar 

  • Zhang, Y., Maier, W.J. and Miller, R.M. (1997) Effect of rhamnolipids on the dissolution, bioavailability and biodegradation of phenanthrene, Environ. Sci. Technol. 31, 2211–2217.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maier, R.M. (2000). Bioavailability and Its Importance to Bioremediation. In: Valdes, J.J. (eds) Bioremediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9425-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9425-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5519-4

  • Online ISBN: 978-94-015-9425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics