Skip to main content

Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development

  • Chapter
Improvement of Crop Plants for Industrial End Uses

Abstract

The biological transformation, by which organic matter is degraded to methane and carbon dioxide is commonly called “methanogenesis”. The main product of methanogenesis, a mixture of carbon dioxide and methane, is called “biogas”. The term “biogas” was registered as trade name (Institute of Gas Technology, Chicago, United States), but nevertheless, is commonly used by the public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al Seadi T (2005) Country report Denmark. IEA Bioenergy Task 37, Energy from Biogas & Landfill Gas. International Energy Agency, Paris, France

    Google Scholar 

  • Amon T, Kryvoruchko V, Amon B, Moitzi G, Buga S, Fistarol Lyson D, Hackl E. and Jeremic D (2003) Biogas production from the energy crops maize and clover grass. Final Report No. 1249 GZ 24.002/59-IIA1/01 to the Austrian Federal Ministry of Agriculture & Environment. Univ. of Nat. Res. & Appl. Life Sciences, Vienna, Austria

    Google Scholar 

  • Amon T, Kryvoruchko V, Bodiroza V, Amon B (2005) Methane production from cereals, grass and sun flowers: effect of harvesting time, and pre-treatment on the methane yield. In: KTBL: 7. Internationale Tagung Bau, Technik und Umwelt in der Nutztierhaltung. Braunschweig, Germany

    Google Scholar 

  • Anderson GK Duarte A and Donelly T (1981) Application of the anaerobic contact process to industrial waste treatment. 34th Int. Symp. CEBEDEAU, Liege, Belgium

    Google Scholar 

  • Andrews JF (1969) Dynamic model of the anaerobic digestion process. J. Sanit. Eng. Div. Proc. Amer. Soc. Civ. Eng. 95: 95–116

    CAS  Google Scholar 

  • Angelidaki I, Ellegaard L and Ahring BK (2003) Application of the anaerobic digestion process. In: Ahring BK (ed) Biomethanation II, Springer

    Google Scholar 

  • Anonym (1997) Systems and Markets Overview of Anaerobic Digestion. IEA Bioenergy Anaerobic Digestion Activity Brochure 1997. Lusk P(ed) Resource Dev. Assoc., 240 Ninth Street, NE, Washington D.C. 20002–6110, USA

    Google Scholar 

  • Anonym (2001) Eurostat environment statistics, Data 1980–1999; OPOCE, Luxembourg.

    Google Scholar 

  • Anonym (2001) European Guideline on “Renewable Energies” (EC) 77/2001

    Google Scholar 

  • Anonym (2002) “Ökostromgesetz”. Austrian BGBl. II Nr. 508/2002

    Google Scholar 

  • Anonym (2004) Biogas Energy Barometer. Eurobserver August 2004, 69–78

    Google Scholar 

  • Anonym (2005a) Biomass action plan. COM (2005) 628 final. Commission of the European Communities, Brussels, Belgium

    Google Scholar 

  • Anonym (2005b) Integrated pollution prevention and Control – Reference document on best available technology for the waste treatment industries. European Commission, Directorate General CRC, Institute for prospective Technological Studies, Sevilla, Spain

    Google Scholar 

  • Anonym (2005c) Statistics Handbook Austria 2005. Statistik Austria; Vienna, Austria

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington D.C., USA

    Google Scholar 

  • Atzema AJ (2005) Practical experience of the cultivation of Red Canary Grass, Switchgrass and Miscanthus in the northeast of the Netherlands. Paper presented at International Energy farming Congress, Papenburg, Germany

    Google Scholar 

  • Austermann-Haun U, Wendler D and Rosenwinkel KH (2001) Großtechnische Erfahrungen mit der Co-Fermentation in Deutschland. KA-Wasserwirtschaft, Abwasser, Abfall 48 (10): 1443–1451

    CAS  Google Scholar 

  • Baader W (1983) Technische Aspekte der Biogaserzeugung aus landwirtschaftlichen Abfall- und Reststoffen. In: Fortschritte beim Biogas. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, Germany, KTBL 285, 160–165

    Google Scholar 

  • Badger DM, Bogue MJ and Stewart DJ (1979) Biogas production from crops and organic wastes: 1.- Results of batch digestions. New Zealand Journal of Science 22: 11–20

    CAS  Google Scholar 

  • Barker HA (1956) Bacterial fermentations. N.Y. John Wiley & Sons, New York

    Google Scholar 

  • Bechamp A (1868) Lettre a M. Dumas. Ann. Chim. Phys. Ser. 4, 13: 103–111

    Google Scholar 

  • van den Berg L, Kennedy KJ and Hamoda MF (1981) Effect of type of waste on performance of anaerobic fixed film and upflow sludge bed reactors. 36th Industrial Waste Conference, Purdue Univ., Lafayette, Ind., USA

    Google Scholar 

  • Becker KP (1984) Biologische Abwasserreinigung im Fließbettverfahren, dem ANITRON System, dem OXITRON System sowie im Membran Anaerob Reaktor System MARS. Neueste Verfahrenstechnologien in der Abwasserreinigung, Abwasser- und Gewässerhygiene. R. Oldenbourg, München, Germany

    Google Scholar 

  • Becker KP (1983) The membrane anaerobic reactor system (MARS) for efficient treatment of ultrahigh polluted industrial wastewaters. Proceedings of the European Symposium AWWT, Noordwijkerhout, The Netherlands, p 294–295

    Google Scholar 

  • Bendixen HJ (1999) Hygienic safety – results of scientific investigations in Denmark (Sanitation requirements in Danish biogas plants). In: Böhm R and Wellinger A(eds) IEA Bioenergy Workshop Vol. 2, Deutsche veterinärmedizinische Gesellschaft e.V., Gießen, Germany, pp 27–47

    Google Scholar 

  • Bendixen HJ and Amendrup S (1992) Safeguards against pathogens in biogas plants. Practical measures to prevent dissemination of pathogens and requirements for sanitation. Report of the Danish Veterinary Service, Copenhagen, Denmark

    Google Scholar 

  • Black MG, Brown JM and Kaye E (1974) Operational experience with an abattoir waste digestion plant at Leeds. Water Poll. Control 78 (5): 532–537

    Google Scholar 

  • BMWA (2003) Technische Grundlage für die Beurteilung von Biogasanlagen. Arbeitskreis Biogasanlagen, BMWA – Federal Ministry of Trade and Labour, Wien, Austria

    Google Scholar 

  • Boe K, Batstone DJ and Angelidaki I (2005) Online headspace chromatographic method for measuring VFA in biogas reactor. Water Science & Technology 52 (1–2): 473–478

    CAS  Google Scholar 

  • Böhnke B, Bischofsberger W and Seyfried CF (1993) Anaerobtechnik – Handbuch der anaeroben Behandlung von Abwasser und Schlamm. Springer, Berlin, Germany

    Google Scholar 

  • Borghans L (1987) Anaerobic waste treatment in the ethanol industry. Fuel Ethanol Workshop, Minneapolis, Minnesota, USA

    Google Scholar 

  • Böhnke B, Bischofsberger, W and Seyfried CF (1993) Anaerobtechnik Handbuch der anaeroben Behnadlung von Abwasser und Schlamm. Springer, Berlin, Germany

    Google Scholar 

  • Braun R, Huber P and Meyrath J (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechn. Letters 3: 159–164

    CAS  Google Scholar 

  • Braun R and Huss S (1982) Anaerobic filter treatment of molasses distillery slops. Water Research 16: 1167–1171

    Article  Google Scholar 

  • Braun R (1982) Biogas–Methangärung organischer Abfallstoffe. Springer, Berlin, Germany

    Google Scholar 

  • Braun R and Kirchmayr R (2004) Legislative aspects. In: Lens P, Hamerlers B, Hoitink H and Bidlingmaier W(eds) Resource recovery and reuse in organic solid waste management. IWA Publishing, London, UK

    Google Scholar 

  • Bro B (2000) Grindsted – Codigestion of Sewage Sludge and Household Waste. Conference “Kick-off for a Future Development of Biogas Technology”, Eskilstuna, Sweden

    Google Scholar 

  • Brondeau P and Girardon PH (1982) Procede Biopural traitement par filtre anaerobic des effluents liquids del lìndustrie agro-alimentaire et de lèvage. In: Strab A, Cartier P and Schleser G(eds) Energy from biomass, 2nd EC Conference. Applied Science Publishers, London – New York

    Google Scholar 

  • Bryant MP (1974) Methane producing bacteria. In: Buchanan & Gibbons(eds) Manual of determinitive bacteriology, 8th Ed. Baltimore, Md., The William & Wilkins Company.

    Google Scholar 

  • Bryant MP (1977) The microbiology of anaerobic degradation and methanogenesis with special reference to sewage. In: Schlegel HG, Barnea J(eds) Microbial energy conversion. Pergamon Press, Oxford

    Google Scholar 

  • Carrington EG (2001) Evaluation of sludge treatments for pathogen reduction – final report. Office for official publications of the European Union, Luxemburg.

    Google Scholar 

  • Carrington EG, Pike EB, Auty D and Morris R (1991) Destruction of faecal bacteria, enteroviruses and ova of parasites in wastewater sludge by aerobic thermophilic and anaerobic mesophilic digestion. Water Sci. Tech. 24 (2): 377–380

    CAS  Google Scholar 

  • Checchi F, Traverso PG, Mata-Alvarez J, Clancy J and Zaror C (1988) State of the art of R&D in the anaerobic digestion process of municipal solid waste in Europe. Biomass 16: 257–284

    Article  Google Scholar 

  • Chen Ruchen (1981) The development of biogas utilisation in China. Biomass 1 (1): 39

    Article  CAS  Google Scholar 

  • Cheremisionoff PN and Moressi AC (1976) Energy from solid wastes. Marcel Decker, New York, USA

    Google Scholar 

  • Chin KK and Goh TN (1978) Bioconversion of solar energy: Methane production through water hyacinth. Proceedings of the 2nd Symposium on Energy from Biomass and Wastes, Inst. of Gas Technology, Chicago, USA, pp 215–228

    Google Scholar 

  • Christensen DR, Gerick JA and Eblen JE (1984) Design and operation of an anaerobic upflow sludge blanket reactor. IWPCF 56(9) 1059–1062

    CAS  Google Scholar 

  • Cillie GG, Henzen MR, Stander GJ and Baillie RD (1969) Anaerobic digestion. IV. The application of the process in waste purification. Water Res. 3: 623–643

    Article  CAS  Google Scholar 

  • Coulter JB, Soneda S and Ettinger MB (1957) Anaerobic contact process for sewage disposal. Sew. Ind. Wastes 29: 468–477

    Google Scholar 

  • Dauber S (1993) Anaerobtechnik - Handbuch der anaeroben Behandlung von Abwasser und Schlamm. Springer, Berlin, Germany

    Google Scholar 

  • DeBaere L, Verdonck O and Verstraete W (1985) High rate anaerobic composting process for the organic fraction of solid wastes. Biotechnology & Bioengineering Symposium 15: 321–330

    Google Scholar 

  • DeBaere L (1999) Anaerobic digestion of solid waste state of the art. 2nd Int. Symp. Anaerobic Digestion of Solid Waste, Barcelona, Spain

    Google Scholar 

  • DeBaere L (2005) Will anaerobic digestion of solid waste survive the future? In: Ahring B and Hartmann H(eds) Proceedings of the 4th Int. Symposium Anaerobic Digestion of Solid Waste. Techn. Univ. Denmark, Copenhagen

    Google Scholar 

  • Degenhart H (2005) Optimierung des Biogasertrages durch angepasste Maissorten und richtiges Anbaumanagement. Paper presented at International Energy farming Congress. Papenburg, Germany

    Google Scholar 

  • Demuynck M, Nyns EJ and Palz W (1984) Biogas Plants in Europe. Reidel Publ., Dordrecht

    Google Scholar 

  • Dessus B, Devin B and Pharbod F (1992) World potential of renewable energies. La Hille Blanc 1: 1–50

    Google Scholar 

  • DeRenzo DJ (1977) Energy from bioconversion of waste materials. Noyes Data Corporation, Park Ridge, New York

    Google Scholar 

  • DEV (2005) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlamm- Untersuchung - Physikalische, chemische, biologische und bakteriologische Verfahren. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  • Diaz LF, Savage GM and Golueke EG (1982) Resource recovery from municipal solid waste. Vol. 2, CRC press, Boca Raton, Fla., USA

    Google Scholar 

  • Dichtl N and Sixt H. (1996) Faulgas- / Biogaserzeugung. In: ATV Handbuch Klärschlamm. Abwassertechn. Vereinigung (Hrsg.) Verlag Ernst & Sohn, Berlin, Germany

    Google Scholar 

  • Donnely T (1978) Industrial effluent treatment with the bioenergy process. Process Biochem. 13: 14–16

    Google Scholar 

  • Ebeling M (2005) Biogasproduktion im Ökobetrieb – Praxiserfahrungen. Paper presented at International Energy farming Congress, Papenburg, Germany

    Google Scholar 

  • Eckenfelder WW and O’Connor DJ (1961) Biological waste treatment. Pergamon Press, Oxford, UK

    Google Scholar 

  • Edelmann W (2001) Biogaserzeugung und–nutzung. In: Kaltschmitt M and Hartmann H(eds) Energie aus Biomasse – Grundlagen, Technik und Verfahren.; Springer, Berlin, Germany

    Google Scholar 

  • Eder B (2005) Anbau, Düngung und Biogaserträge von nachwachsenden Rohstoffen. Paper presented at International Energy farming Congress, Papenburg, Germany

    Google Scholar 

  • Ehhalt DH (1974) The atmospheric cycle of methane. In: Schlegel HG, Gottschalk G and Pfenning N(eds) Microbial production and utilisation of gases. Akademie der Wissenschaften, Göttingen, Germany

    Google Scholar 

  • Fannin KF, Srivastava VJ and Chynoweth DP (1982) Unconventional anaerobic digester design for improving methane yields from sea kelp. Proceedings of the 6th Symposium on Energy from Biomass and Wastes. Inst. of Gas Technology, Chicago, pp 373–399

    Google Scholar 

  • Finney CD and Evans RS (1975) Anaerobic digestion – the rate limiting process and the nature of inhibition. Science 190: 1088

    CAS  Google Scholar 

  • Fischer T and Krieg A (2005) Monofermentation von Energiepflanzen – Erfahrungen von der Biogasanlage Obernjesa. VDI Berichte 1872, 153–163

    Google Scholar 

  • FNR (2005) Handreichung Biogasgewinnung und –nutzung. Fachagentur Nachwachsende Rohstoffe e.V., Gültzow

    Google Scholar 

  • Gallert C, Henning AK, Stentzel U and Winter J (2002) Verarbeitung von getrennt gesammelten Bioabfällen in der Bioabfall Vergärungsanlage Karlsruhe Durlach. KA Wasserwirtschaft, Abwasser, Abfall 49 (5): 695–704

    CAS  Google Scholar 

  • Gessler G and Keller K (1995) Vergleich verschiedener Verfahren zur Vergärung von Bioabfall. Abfallwirtschaftsjournal 7 (6): 377–382

    Google Scholar 

  • Grady CPL jr. and Lim HC (1980) Biological wastewater treatment. Marcel Decker, New York, USA

    Google Scholar 

  • Greenpeace (1993) Towards a fossil free energy future: The next energy transition. A technical analysis for Greenpeace International by the Stockholm Environment Institute. Boston Centre, Boston, USA

    Google Scholar 

  • Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass & Bioenergy 26 (4): 389–399

    Article  CAS  Google Scholar 

  • Hall DO, Rosillo-Calle F, Williams RH and Woods J (1993) Biomass for Energy: Supply Prospects. In: Johannson BJ(ed) Renewables for fuels and electricity. Island Press, Washington DC, USA

    Google Scholar 

  • Heertjes PM and van der Meer RR (1978) Daynamics of liquid flow in upflow reactor used for anaerobic treatment of wastewater. Biotechn. Bioeng. 20: 1577–1594

    Article  Google Scholar 

  • Heiermann M, Plöchl M, Linke B and Schelle H (2002) Preliminary evaluation of some cereals as energy crops for biogas production. In: Sayigh AAM(ed) Proceedings World Renewable Energy Congress VII. Elsevier Sci. Ltd

    Google Scholar 

  • Heiermann M and Plöchl M (2004) Crops – A big potential for biogas production. Proceedings of the World Renewable Energy Production Congress VIII. Denver, Colorado, USA

    Google Scholar 

  • Heijnen JJ, Enger WA, Moulder A, Lourens PA, Keijzers AA and Hoeks FWJMM (1985) Anwendung der anaeroben Wirbelschichttechnik in der biologischen Abwasserreinigung. Gwf – Wasser / Abwasser 126 (2): 81–87

    CAS  Google Scholar 

  • Henderson C, (1973) The effect of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. 81: 107

    Article  CAS  Google Scholar 

  • Hobson PN, Bousfield S and Summers R (1981) Methane production from agricultural and domestic wastes. Applied Science Publishers, London, UK

    Google Scholar 

  • Hoppe W (1956) Entwicklung und Stand der Klärgasgewinnung und Klärgasverwertung in Deutschland. In: Liebmann H(ed) Gewinnung und Verwertung von Methan aus Klärschlamm und Mist. R. Oldenbourg, München, Germany.

    Google Scholar 

  • Hoppenheidt K and Mücke W (1999) Gemeinsame Behandlung von Bioabfällen und organischen Gewerbeabfällen durch Co-Vergärung. Bayerisches Landeamt für Umweltschutz, BlfA Texte No. 11, München, Germany

    Google Scholar 

  • Hulshoff Pol LW, De Zeeuw, W, Dolfing J and Lettinga G (1983) Start up and sludge granulation in the UASB reactors. Proceedings of the European Symposium AWWT, Noordwijkerhout, The Netherlands

    Google Scholar 

  • Hülsbergen KJ and Kalk WD (2001) Energy balances in different agricultural systems – Can they be improved? Proceedings of the International Fertiliser Siciety No. 476, The International Fertiliser Society, York, YO32 5YS, UK

    Google Scholar 

  • IEA (1998) World energy outlook. International Energy Agency. Paris, France

    Google Scholar 

  • IIASA/WEC (1998) Global energy perspectives. Nakicenovic N(ed), Cambridge Univ. Press, Cambridge, UK

    Google Scholar 

  • IPCC (1996) Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific and technical analysis. Intergovernmental Panel on Climate Change, Working Group II Report. Cambridge Univ. Press, Cambridge, UK

    Google Scholar 

  • Johansson TBJ, Kelly H, Reddy AKN and Williams RH (1993) Renewable fuels and electricity for a growing world economy. In: Johansson TBJ(ed.) Renewables for fuels and electricity. Island Press, Washington, DC, USA

    Google Scholar 

  • Jönsson O (2005) Country report Sweden 2005. IEA Bioenergy Task 37 “Energy from Biogas & Landfill Gas”. Int. Energy Agency, Paris, France

    Google Scholar 

  • Kaiser F (2004) Methanerträge verschiedener nachwachsender Rohstoffe. Biogas Journal (2): 22–24

    Google Scholar 

  • Kaltschmitt M and Hartmann H (2001) Energie aus Biomasse. Springer, Berlin, New York

    Google Scholar 

  • Kaparaju P, Luostarinen S, Kalmari E, Kalmari J and Rintala J (2002) Codigestion of energy crops and industrial confectionary by-products with cow manure: Batch scale and farm scale evaluation. Water Sci. & Technol. 45 (19): 275–280

    CAS  Google Scholar 

  • Kearney TE, Larkin MJ, Frost JP and Levett PN (1993) Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste. J. Appl. Bacteriol. 75: 215–219

    PubMed  CAS  Google Scholar 

  • Keimer U, and Schilcher A (1999) Ist die Vergärung von Silomais in einer Biogasanlage sinnvoll? Biogas Journal (3) 10–12

    Google Scholar 

  • Kemmer FN (1979) The NALCO water handbook. McGraw-Hill, New York, USA

    Google Scholar 

  • Keppler F, Hamilton JTG, Braß M and Röckmann T (2006): Nature 439:187–191

    Article  PubMed  CAS  Google Scholar 

  • Kern M (1999) Stand und Perspektiven der biologischen Abfallbehandlung in Deutschland. In: Wiemer K and Kern M(eds) Bio- und Restabfallbehandlung III. S 293–321, Baeza, Witzenhausen, Germany

    Google Scholar 

  • Kirchmayr R, Scherzer R, Baggesen DL, Braun R and Wellinger A (2004) Animal by-products and anaerobic digestion, requirements of the European Regulation (EC) No. 1774/2002. Brochure IEA Bioenergy Task 37 – Energy from biogas and landfill gas. Nova Energie, Aadorf, Switzerland

    Google Scholar 

  • Kirchmayr R, Braun R and Baumann F (2000) Anaerobe Verwertung von Schlachtnebenprodukten. Die Fleischmehlindustrie 52 (12): 231–235

    Google Scholar 

  • Klass L (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, San Diego, Ca., USA

    Google Scholar 

  • Kleemann M and Meliß M (1988) Regenerative Energiequellen. Springer, Berlin New York

    Google Scholar 

  • Klink G (2005) Endproduktaufreinigung. Paper presented at Symposium “Erfahrungsaustausch für Betreiber von Kompostierungs- und Biogasanlagen. Schloß Wolfpassing, Steinakirchen am Forst, Austria

    Google Scholar 

  • Kloss R (1986) Planung von Biogasanlagen nach technisch – wirtschaftlichen Überlegungen. R. Oldenbourg, München, Germany

    Google Scholar 

  • Kolb B (1986) Head Space Gaschromatographie mit Kapillar Trennsäulen. Vogel, Würzburg, Germany

    Google Scholar 

  • Koukios EG (2002) Biomass. In: Eurec Agency(ed) The Future for Renewable Energy 2 – Prospects and Directions., James & James Science Publ., London, UK

    Google Scholar 

  • Koot ACJ (1980) Behandling van Afalwater. Waltman, Delft, Holland

    Google Scholar 

  • Korz DJ (1999a) Naßvergärungsanlagen in Deutschland. Entsorgungspraxis 3: 39–41

    Google Scholar 

  • Korz DJ (1999b) Vergärung von Hausmüll auf Sardinien. Entsorgungspraxis 7–8: 29

    Google Scholar 

  • Koyama T (1963) Gaseous metabolism in sediments and paddy soils and the production of atmospheric methane and hydrogen. J. of Geophys. Res. 68: 3971–3973

    CAS  Google Scholar 

  • Krull R, Diekmann R and Lindert M (1995) Behandlung von Bioabfall in Vergärungsanlagen – eine Marktübersicht. Entsorgungspraxis 5: 22–25

    Google Scholar 

  • Kuhn E (1995) Kofermentation. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. Darmstadt, Germany. KTBL, Arbeitspapier 219

    Google Scholar 

  • Laaber M, Kirchmayr R, Madlener R and Braun R (2005) Development of an evaluation system for biogas plants. 4th Int. Symposium Anaerobic Digestion of Solid Waste. Copenhagen, Denmark

    Google Scholar 

  • Landbeck M (2005) Energiemais, Ziele, Strategien und erste Züchtungserfolge. Paper presented at International Energy farming Congress. Papenburg, Germany

    Google Scholar 

  • Landine RC, Brown JG, Cocci AA and Viraraghavan T (1980) Potato processing wastewater treatment using hozontal anaerobic filters. Can. Inst. Food Sci. Technol. Journal 14(2): 144–146

    Google Scholar 

  • Langhans G (2000) Co-Vergärung in der Praxis. Abfall Brief – Magazin zur Abfallpraxis 7(2): 7–9

    Google Scholar 

  • Lashoff DA and Tirpak DA (1991) Policy options for stbilising global climate. Report to the Congress, Technical Appendices. Office of Policy, Planning and Evaluation; US Environmental Protection Agency, Washington, DC., USA

    Google Scholar 

  • Lawrence AW and McCarty PL (1964) Effects of sulphide on anaerobic treatment. Proceedings of the 19th Purdue Industrial Waste Conference. Purdue Univ., Ann Arbor, Mich., Ann Arbor Science

    Google Scholar 

  • Lähtomäki A Viinkainen TA Alen R and Rintala JA (2003) Methane production from energy crops and crop residues: Effect of harvest time and chemical composition. Proceedings of the International Nordic Bio-energy Conference. Jyväskylä, Finland

    Google Scholar 

  • Lähtomäki A Ronkainen OM and Rintala JA (2005) Developing storage methods for optimised methane production from energy crops in northern conditions. In: Ahring BK and Hartmann H(eds) Proceedings of the 4th Int. Symposium on Anaerobic Digestion of Solid Waste. Copenhagen, Denmark

    Google Scholar 

  • Leschber R and Loll U (1996) ATV Handbuch Klärschlamm. Ernst & Sohn, Berlin, Germany

    Google Scholar 

  • Lettinga G and Hulshoff Pol L (1988) Die Anwendung von Schlammbettreaktoren. Proceedings Symposium Verfahrenstechnik in der mechanischen-, thermischen-, chemischen- und biologischen Abwasserreinigung. Baden Baden, Germany, p 187–202

    Google Scholar 

  • Lettinga G, van der Saar J. and van der Ben J. (1976) Anaerobe zuivering van het afalwater van de bietsuikerindustrie. H2O 9, 38–43

    Google Scholar 

  • Lettinga G, van Velsen L, de Zeeuw W and Homba S.W (1980) The application of anaerobic digestion to industrial pollution treatment. In: Wheatley DA and Hughes DE(eds) (1979) Proceedings of the 1st Int. Symp. Anaerobic Digestion. Applied Science Publishers, London, UK

    Google Scholar 

  • Liebich T (2004) Minimierung von Konfliktpotenzial durch Gerüche an Biogasanlagen. 13th Annual Meeting of the German Biogas Association. Leipzig, Germany

    Google Scholar 

  • Liebmann H (1956) Gewinnung und Verwertung von Methan aus Klärschlamm und Mist, . R. Oldenbourg, München, Germany

    Google Scholar 

  • Lieth H and Whittaker RW (1975) The primary production of the biosphere. Springer, Berlin, Germany

    Google Scholar 

  • Lindorfer H (2003) Vergleich von Meßmethoden zur Bestimmung der Konzentration flüchtiger Fettsäuren im Faulschlamm aus Biogasanlagen. Thesis, Univ. Natural Res. & Applied Life Sciences, Vienna, Austria

    Google Scholar 

  • Lindorfer H, Kirchmayr R and Braun R (2005a) Self heating of anaerobic digesters using energy crops. In: Ahring BK and Hartmann H(eds) Proceedings of the 4th Int. Symposium Anaerobic Digestion of Solid Waste, International Water Association, London, UK

    Google Scholar 

  • Lindorfer H (2005b) Massenbilanz einer 500 kW Energiepflanzenvergärungsanlage. Unpublished internal report of energy crop digester monitoring. Austrian Renewable Energy Network (RENET). A Research project sponsored by the Federal Ministry of Trade & Industry (BMWA), Wien, Austria

    Google Scholar 

  • Linke B, Baganz K and Schlauderer R (1999) Nutzung von Feldfrüchten zur Biogasgewinnung. Agrartechnische Forschung 5(2): 81–90

    Google Scholar 

  • Liqudara MJ and Ott ChR (1983) The treatment of apple processing wastewater by the anaerobic filter process. Proceedings of the 38th Ind. Waste Conference, Ann Arbor Science, Mich. USA

    Google Scholar 

  • McBride BC and Wolfe RS (1971) Biosynthesis of dimethylarsine by Methanobacterium. Biochemistry 10, 23: 4312

    Article  PubMed  CAS  Google Scholar 

  • McCarty PL (1982) History and overview on anaerobic digestion. In: Proceedings of the 2nd Int. Symposium Anaerobic Digestion Travemünde (1981). Elsevier Biomedical Press, Amsterdam, Holland

    Google Scholar 

  • McCarty PL and McKinney RE (1961) Salt toxicity in anaerobic digestion. JWPCF 33, 399–415

    CAS  Google Scholar 

  • McDonald P (1981) The biochemistry of silage. John Wiley & Sons, Chichester – New York – Brisbane – Toronto

    Google Scholar 

  • McInerney MJ and Bryant MP (1980) Anaerobic degradation of lactate by syntropic associations of Methanosarcina barkeri and Desolfovibrio sp. and effect of H2 on acetate degradation. Appl. Env. Microbiol. 41: 346–454

    Google Scholar 

  • Mah RA (1977) Acetate a key intermediate in methanogenesis. In: Schlegel HG, Barnea J(eds) Microbial energy conversion. Pergamon Press, Oxford.

    Google Scholar 

  • Mata-Alvarez J (2003) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, London, UK

    Google Scholar 

  • Märkel H and Stegmann R (1994) Anaerobe Behandlung von festen und flüssigen Main, Germany

    Google Scholar 

  • Martens W, Philipp W and Böhm R (2000) Seuchenhygienische Bewertung von Anaerobverfahren unter besonderer Berücksichtigung der landwirtschaftlichen Kofermentation. In: Wiemer K and Kern M(eds) Bio- und Restabfallbehandlung IV, Witzenhausen Institut für Abfall, Umwelt und Energie, Witzenhausen, Germany, pp 965–984

    Google Scholar 

  • Mateu A, Mata-Alvarez J and Pares J (1992) Enterobacterial and viral decay experimental models for anaerobic degestion of piggery waste. Appl. Microbiol. Biotechnol. 38: 291–296

    Article  Google Scholar 

  • McKain N and Hobson PN (1987) A note on the destruction of porcine enteroviruses in anaerobic digestions. Biol. Wastes 22: 147–155

    Article  Google Scholar 

  • Melin T and Rautenbach R (2004) Membranverfahren. Springer, Berlin, Germany

    Google Scholar 

  • Morgan PF and Neuspiel PJ (1958) Environmental control of anaerobic digestion with gas diffusion. In: McCabe J and Eckenfelder W(eds) Biological treatment of sewage and industrial waste. Reinhold, New York, N.Y., USA

    Google Scholar 

  • Mosey FE, Swanwick JD and Hughes A (1971) Factors affecting the availability of heavy metals to inhibit anaerobic digestion. Water Poll. Control 6: 668–680

    Google Scholar 

  • Müsken J and Bidlingmaier W (1994) Vergärung und Kompostierung von Bioabfällen. Texte und Berichte zur Abfallwirtschaft Volume 6, Landesanstalt für Umweltschutz, Karlsruhe, Germany

    Google Scholar 

  • Neubarth J Mairitsch K Hofbauer H and Kaltschmitt M (2000) Biomasse. In: Neubarth J and Kaltschmitt M(eds) Erneuerbare Energien in Österreich. Springer, Wien New York

    Google Scholar 

  • Neureiter M, Teixeira Pereira dos Santos J, Perez Lopez C, Pichler H, Kirchmayr R and Braun R (2005) Effect of silage preparation on methane yields from whole crop maize silages. In: Ahring BK and Hartmann H(eds) Proceedings of the 4th Int. Symposium on Anaerobic Digestion of Solid Waste. Copenhagen, Denmark.

    Google Scholar 

  • Nordberg A (2005) Agrioptigas – Demonstration of an optimised production system for biogas from biological waste and agricultural feedstock. Paper presented at the Cropgen / IEA Bioenergy Task 37 Research Exchange Meeting, Utrecht, The Netherlands

    Google Scholar 

  • Nyns EJ (1986) Biomethanation processes. In: Schönborn W(ed) VCH Weinheim Biotechnology Vol 8, Microbial degradations, pp 207–267

    Google Scholar 

  • Oliva E Jaquart JC and Prevot C (1990) Treatment of waste water at the El Aquila Brewery Madrid, Spain. Methanisation in fluidised bed reactors. Water Sci. Techn. 22 (1/2): 483–490

    CAS  Google Scholar 

  • Omelianski W (1906) Über Methanbildung in der Natur bei biologischen Prozessen. Zbl. Bakt. Parasitenkunde II, 15: 673–687

    Google Scholar 

  • Pavan P, Battistoni P, Bolzonella D, Innocenti L, Traverso P and Checchi F (2000) Integration of wastewater and of MSW treatment cycles: From pilot scale to industrial realisation. The new full scale plant of Treviso. In: Hartmans S and Lens P(eds) Proceedings from the 4th Int. Symposium on Environmental Biotechnology, Noordwijkerhout, Holland

    Google Scholar 

  • Pesaro F, Sorg I and Metzler A (1995) In situ inactivation of animal viruses and Coliphage in non-aerated liquid and semi-liquid animal wastes. Appl. Env. Microbiol. 61: 92–97

    CAS  Google Scholar 

  • Philipp W and Böhm R (1997) Hygieneanforderungen an Verfahren der Boabfallvergärung. In: Wiemer K and Kern M(eds) Bio- und Restabfallvergärung pp 313–344, Witzenhausen Institut für Abfall, Umwelt und Energie; D-37213 Witzenhausen, Germany

    Google Scholar 

  • Pette KC, de Vletter R Winds E and van Gils W (1980) Full scale anaerobic treatment of beet sugar waste water. Proceedings of the 35th Ind. Waste Conf. Purdue Univ., Purdue, Lafayette, Ind., Ann Arbor Science, USA

    Google Scholar 

  • Pfeffer JT (1978) Methane from solid urban waste. The REFCOM project. Process Biochem. 13: 8

    Google Scholar 

  • Pfeffer JT (1979) Anaerobic digestion processes. In: Stafford DA, Wheatley BI and Hughes, DE(eds) Proceedings of the 1st Int. Symposium on Anaerobic Digestion. Applied Science Publishers, London

    Google Scholar 

  • Pipyn P, Verstraete W and Ombregt JP (1979) A pilot scale anaerobic upflow reactor treating distillery wastewaters. Biotechn. Letters 1: 495–500

    Article  CAS  Google Scholar 

  • Pohland, FG and Bloodgood DE (1963) Laboratory studies on mesophilic and thermophilic anaerobic sludge digestion. JWPCF 35, 11–42

    Google Scholar 

  • Pouech P, Fruteau H, Bewa H (1998) Agricultural Crops for Biogas Production on Anaerobic Digestion Plants. Proceeding of the International Conference Biomass for Energy and Industry, Würzburg, Germany

    Google Scholar 

  • Refsgaard K, Halberg N and Kristensen ES (1998): Energy utilisation in crop and dairy production in organic and conventional livestock production systems. Agriculturals Systems 57 (4): 599–630

    Article  Google Scholar 

  • Reinhold F and Noak W (1956) Laboratoriumsversuche über die Gasgewinnung aus landwirtschaftlichen Stoffen. In: Liebmann H(ed) Gewinnung und Verwertung von Methan aus Klärschlamm und Mist., R. Oldenbourg, München, Germany

    Google Scholar 

  • Resch Ch. (2005) Massenbilanz einer 500 kW Energiepflanzenvergärungsanlage. Unpublished internal report of energy crop digester monitoring. Austrian Renewable Energy Network (RENET). A Research project of the Federal Ministry of Trade & Industry (BMWA), Wien, Austria

    Google Scholar 

  • Roediger H (1967) Die anaerobe alkalische Schlammfaulung. R. Oldenbourg, München, Germany

    Google Scholar 

  • Ross WE (1954) Dual Disposal of Garbage and Sewage at Richmond; Indiana, USA. Sewage & Industrial Waste 26: 2

    Google Scholar 

  • Ruppel W, Biedron M, Thornton B and Swientek RJ (1982) Upflow anaerobic sludge blanket reduces COD 75–85%, produces methane gas. Food processing 10: 66–68

    Google Scholar 

  • Ryther JH and Hasniak MD (1981) Anaerobic digestion and nutrient recycling of small benthic or floating seaweeds. Proceedings of the 5th Symposium on Energy from Biomass and Wastes, Inst. of Gas Technology, Chicago, pp 383–412

    Google Scholar 

  • Sanders J (2005) Possibilities of integrating bio-energy (biogas) generation into other biomass based production systems. Paper presented at the Cropgen / IEA Bioenergy Task 37 Research Exchange Meeting, Utrecht, The Netherlands

    Google Scholar 

  • Sanders FA and Bloodgood DE (1965) The effect of nitrogen to carbon ratio on anaerobic decomposition. JWPCF 37, 1741–1752

    CAS  Google Scholar 

  • Seebaum H (1964) Trockenreinigung. In: Foerst W.(ed) Ullmanns Enzyklopädie der Technischen Chemie, Volume 15, Urban & Schwarzenberg, München-Berlin, Germany

    Google Scholar 

  • Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH(eds) The Procaryotes, Springer Verlag, Berlin-Heidelberg-NewYork

    Google Scholar 

  • Schmelz KG (2000) Energie aus Abfällen: Co-Vergärung in kommunalen Kläranlagen. Conference “Kommunale Chance: Energie aus Biomasse”, Inst. für kommunale Wirtschaft und Umweltplanung Gießen, Germany

    Google Scholar 

  • Schön M (1994) Verfahren zur Vergärung organischer Rückstände in der Abfallwirtschaft. Erich Schmidt, Berlin, Germany

    Google Scholar 

  • Schroepfer GJ, Fullen WJ, Johnson AS, Ziemke NR and Anderson JJ (1955) The anaerobic contact process as applied to packing house wastes. Sew. Ind. Wastes 27: 460–486

    CAS  Google Scholar 

  • Shaw BG (1971): A practical and bacteriological study of the anaerobic digestion of waste from an intensive pig unit. PhD thesis, University Aberdeen, Scotland

    Google Scholar 

  • Shell (1996) The evolution of the worlds energy system 1860–2010. Shell Int. Petroleum Co., London, UK

    Google Scholar 

  • Silvers G (1991) Hygienisch–mikrobiologische Untersuchungen an der mesophilthermophil arbeitenden Biogasanlage eines Milchviehbetriebes. PhD Thesis, Inst. für Umwelt- und Tierhygiene, University Stuttgart – Hohenheim, Germany

    Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tennessee, USA

    Google Scholar 

  • Spillmann SK, Traub F, Schwyzer M and Wyler R (1987) Inactivation of animal viruses during sewage sludge treatment. Appl. Environm. Microbiol. 53 (9): 2077–2081

    CAS  Google Scholar 

  • Stafford DA, Hawkes DL and Horton R (1980) Methane production from waste organic matter. CRC Press, Boca Raton, Fla, USA

    Google Scholar 

  • Stewart DJ (1980) Energy crops to methane. In: Stafford DA and Wheatley BI(eds) Anaerobic Digestion, Applied Science Publishers, London

    Google Scholar 

  • Stewart DJ (1992) Energy from crop grown biomass. In: Baader W(ed) Biotechnologies for Pollution Control and Energies, FAL Technical Series 21, FAL, Braunschweig, Germany

    Google Scholar 

  • Strauch D and Philipp W (2000) Hygieneaspekte der biologischen Abfallbehandlung und–verwertung. In: Bidlingmaier W(ed) Biologische Abfallverwertung, Eugen Ullmer GmbH & Co, Stuttgart, Germany, pp 155–208

    Google Scholar 

  • Suidan MT, Strubler, CE, Kao SW and Pfeffer JT (1983) Treatment of coal gasification waste water with anaerobic filter technology. J. Water Poll. Control Fed. 55: 1263–1270

    CAS  Google Scholar 

  • Summers R and Bousfield S (1980) A detailed study of piggery waste anaerobic digestion. Agr. Wastes 2: 61–78

    Article  Google Scholar 

  • Sykes RM and Kirsch EJ (1972) Accumulation of methanogenic substrates in CCl4 inhibited sewage sludge digester cultures. Water Research 6: 41–55

    Article  CAS  Google Scholar 

  • TA–Luft (2002) Technische Anleitung zur Reinhaltung der Luft TA Luft (Germany); Ministerialblatt 30.6.2002 GMBl. 2002, Volume 25–29, pp 511–605 Internet: <http://www.bmu.de/files/taluft.pdf>

    Google Scholar 

  • Taylor TW and Burn RJ (1973) Full scale anaerobic filter treatment on wheat starch plant wastes. Aiche Symp. Ser. 69, 30–37

    CAS  Google Scholar 

  • Thomé-Kozmiensky KJ (1995) Biologische Abfallbehandlung. EF-Verlag für Energie- und Umwelttechnik, Berlin, Germany

    Google Scholar 

  • Tidden F (2003) Leistunsgmerkmale und Grenzen der mehrphasigen anaeroben Behandlung kommunaler Bioabfälle. Berichte aus Wassergüte und Abfallwirtschaft der Technischen Universität München, Volume 176, München, Germany

    Google Scholar 

  • Tzilivakis J, Warner DJ, May M, Levis KA and Jaggard K (2005) An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85 (2): 101–119

    Article  Google Scholar 

  • Unterlerchner T (2006) Vergärung innovativer Substratkombinationen im Labormaßstab. Projektarbeit Fachhochschule Wiener Neustadt für Wirtschaft und Technik – Studiengang Biotechnische Verfahren Tulln, Austria

    Google Scholar 

  • Van Doren HJ (2005) The use of grass from nature reserve areas as co-digestion material with cattle slurry. Paper presented at International Energy farming Congress. Papenburg, Germany

    Google Scholar 

  • Van Velsen AFM (1979) Adaptation of methanogenic sludge to high ammonia nitrogen concentrations. Water Res. 13: 995–999

    Article  Google Scholar 

  • Verstraete W, DeBeer D, Pena M, Lettinga G and Lens P (1996) Anaerobic bioprocessing of organic wastes. World J. of Microbiol. & Biotechn. 12: 221–238

    Article  CAS  Google Scholar 

  • Vogels GD (1979) The global cycle of methane. Antonie van Leeuwenhoek 45: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Von Felde A (2005) Nawaro Biogasanlage ProN – Anlagenkonzeption und praktische Erfahrungen. Paper presented at International Energy farming Congress; Papenburg, Germany

    Google Scholar 

  • WEC (1993) World Energy Council – Energy for tomorrows world. St. Martins Press, New York, USA

    Google Scholar 

  • Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Applied Biochem. & Biotechnol. 109 (1–3): 263–274

    Article  CAS  Google Scholar 

  • Weiland P (2004) Erfahrungen deutscher Biogasanlagen – Ergebnisse einer bundesweiten Bewertung. Paper presented at the Minisymposium “Biogasgewinnung aus nachwachsenden Rohstoffen”, University of Natural Resources & Applied Life Sciences Vienna, IFA Tulln, Austria

    Google Scholar 

  • Weiland P (2005) Results and bottle necks of energy crop digestion plants - Required process technology innovations. Paper presented at the IEA Workshop–nergy Crops & Biogas–, Utrecht, Holland

    Google Scholar 

  • Wellinger A (2005) Country report Switzerland 2005. IEA Bioenergy Task 37 “Energy from Biogas & Landfill Gas”. Int. Energy Agency, Paris, France

    Google Scholar 

  • Wellinger, A, Edelmann W, Favre R, Seiler B und Woschitz D (1984) Biogas Handbuch. Wirz, Aarau, Switzerland

    Google Scholar 

  • Wiemer K and Kern M (2000) Bio- und Restabfallbehandlung IV. Verlag Witzenhausen Institut für Abfall, Umwelt und Energie GmbH, Witzenhausen, Germany

    Google Scholar 

  • Wiemer K and Kern M (1998) Kompost – Atlas 1998/99. M.I.C. Baeza, Witzenhausen, Germany

    Google Scholar 

  • Wiemer K and Kern M. (1996) Biologische Abfallbehandlung III. M.I.C. Baeza, Witzenhausen, Germany

    Google Scholar 

  • Winkelmann J (2005) Optimierung der Gasausbeuten bei Nawaros durch Siliermittel. Paper presented at the 14th Annual Meeting of IBBK “Biogas und Bioenergie in der Landwirtschaft. Kirchberg/Jagst Weckelweiler, Germany

    Google Scholar 

  • Witt ER, Humphrey WJ and Roberts TE (1979) Full scale anaerobic filter treats high strength wastes. In: Ann Arbor, Mich Bell JM(ed) Proceedings of the 34th Ind. Waste Conf.; Purdue Univ., Ann Arbor Sci. Mich., USA

    Google Scholar 

  • Yang PY (1981) Methane fermentation of Hawaiian seaweeds. Proceedings of the 5th Symposium on Energy from Biomass and Wastes, Inst. of Gas Technology, Chicago, pp 307–358

    Google Scholar 

  • Young JC (1991) Factors affecting the design and performance of upflow anaerobic filters. Water Sci. Techn. 24 (8): 133–155

    CAS  Google Scholar 

  • Young JC and McCarty PL (1969) The anaerobic filter for waste treatment. JWPCF 41, R160–R173

    Google Scholar 

  • Zauner E, Küntzel U (1986) Methane production from ensiled plant material. Biomass 10, 207–223

    Article  CAS  Google Scholar 

  • Zeevalink JA and Maaskant W (1984) Biogas from effluent of starch industries by anaerobic treatment. Die Stärke 36, 131–135

    Article  Google Scholar 

  • Zubr J (1986) Methanogenic fermentation of fresh and ensiled plant materials. Biomass 11 (3): 159–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Braun, R. (2007). Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: RANALLI, P. (eds) Improvement of Crop Plants for Industrial End Uses. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5486-0_13

Download citation

Publish with us

Policies and ethics