Skip to main content

Belowground Signaling and Defence in Host–Pythium Interactions

  • Chapter
  • First Online:
Belowground Defence Strategies in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Members of the genus Pythium interact with plants and microbial members of the rhizosphere using a variety of signaling mechanisms. Biochemical signaling has a role in pathogen–host specificity, host defence response induction, and antagonism between Pythium and biocontrol microorganisms. Pythium irregulare, P. aphanidermatum, and P. arrhenomanes are among the plant-pathogenic species that share a common mode of infection but vary in host range and virulence, possibly due to differences in nutrient acquisition and sensitivity to host and biocontrol interactions. Host innate immunity to Pythium is conferred by the jasmonic acid (JA) and ethylene (E) signal pathways in roots; triggers of these pathways include pathogen cell surface components, and metabolite and protein effectors. Roots also can mount chemical (metabolite-based) defences against specific Pythium spp., and, reciprocally, Pythium can degrade defence metabolites. In contrast, P. oligandrum is a mycoparasite of other Pythium species and also sends signals that trigger defence responses in plants. Interactions between plant-pathogenic Pythium and biocontrol bacteria have revealed additional complexities of belowground signaling. In this chapter, we summarize current knowledge about rhizosphere signaling between Pythium spp., other microbial community members, and plant roots in agricultural production venues, with emphasis on molecular mechanisms. We also report new findings for the role of JA-mediated defence in protection of tomato from P. aphanidermatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benhamou N, Bélanger RR, Rey P, Tirilly Y (2001) Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol Biochem 39:681–698

    Article  CAS  Google Scholar 

  • Benhamou N, le Floch G, Vallance J, Gerbore J, Grizard D, Rey P (2012) Pythium oligandrum: an example of opportunistic success. Microbiology 158:2679–2694

    Article  CAS  PubMed  Google Scholar 

  • Bouarab K, Melton R, Pearl J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  CAS  PubMed  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campa A, Pérez-Vega E, Pascual A, Ferreira JJ (2010) Genetic analysis and molecular mapping of quantitative trait loci in common bean against Pythium ultimum. Phytopathology 100:1315–1320

    Article  PubMed  Google Scholar 

  • Campos ML, Kang J-H, Howe GA (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter JP, Spink J, Cannon PF, Daniels MJ, Osbourn AE (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65:3364–3372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chellemi DO, Mitchell DJ, Kannwischer-Mitchell ME, Rayside PA, Rosskopf EN (2000) Pythium associated with bell pepper production in Florida. Plant Dis 84:1271–1274

    Article  Google Scholar 

  • Davis DJ, Lanter K, Makselan S, Bonati C, Asbrock P, Ravishankar JP, Money NP (2006) Relationship between temperature optima and secreted protease activities of three Pythium species and pathogenicity toward plant and animal hosts. Mycol Res 110:96–103

    Article  CAS  PubMed  Google Scholar 

  • Deacon JW, Mitchell RT (1985) Toxicity of oat roots, oat root extracts, and saponins to zoospores of Pythium spp. and other fungi. Trans Br Mycol Soc 84:479–487

    Article  Google Scholar 

  • de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789

    Article  PubMed  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003a) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • de Souza JT, de Boers M, de Waard P, van Beek TA, Raajimakers JM (2003b) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada-Garcia T, Ray TC, Green JR, Callow JA, Kennedy JF (1990) Encystment of Pythium aphanidermatum zoospores is induced by root mucilage polysaccharides, pectin and a monoclonal antibody to a surface antigen. J Exp Bot 41:693–699

    Article  CAS  Google Scholar 

  • Gerbore J, Benhamou N, Vallance J, Le Floch G, Grizard D, Regnault-Roger C, Rey P (2014) Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ Sci Pollut Res 21:4847–4860

    Article  CAS  Google Scholar 

  • Hase S, Shimizu K, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543

    Article  CAS  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahasi H (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • Horner NR, Grenville-Briggs LJ, van West P (2012) The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol 116:24–41

    Article  CAS  PubMed  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Nat Acad Sci USA 104:10732–10736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov DA, Bernards MA (2012) Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 78:44–53

    Article  CAS  PubMed  Google Scholar 

  • Joshi RK, Nanda S, Rout E, Kar B, Naik PK, Nayak S (2013) Molecular modeling and docking characterization of CzR1, a CC-NBS-LRR R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Bioinformation 9:560–564

    Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant Microbe Interact 24:352–358

    Article  CAS  PubMed  Google Scholar 

  • Kar B, Nanda S, Nayak PK, Nayak S, Joshi RJ (2013) Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding-site-leucine-rich repeat R-gene from Curcuma zedoaria Loeb. that confers resistance to Pythium aphanidermatum. Physiol Mol Plant Pathol 83:59–68

    Article  CAS  Google Scholar 

  • Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig D, Takahashi H (2009) Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol 50:924–934

    Article  CAS  PubMed  Google Scholar 

  • Le Floch G, Rey P, Benizri E, Benhamou N, Tirilly Y (2003) Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant Soil 257:459–470

    Article  Google Scholar 

  • Leung KW, Wong AS-T (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lévesque CA, Brouwer H, Cano L et al (2010) Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R-C, Ding Z-S, Li L-B, Kuang T-Y (2001) A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol Biol Rep 19:379a–379e

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Li X, Smyth EM, Yannarell AC, Mackie RI (2014) Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep 6:293–306

    Article  CAS  PubMed  Google Scholar 

  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci U S A 102:17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Masunaka A, Sekiguchi H, Takahashi H, Takenaka S (2010) Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J Phytopathol 158:417–426

    Article  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Zhao X, Cohen MF, Raaijmakers JM (2007) Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology 97:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RT, Deacon JW (1985) Differential (host-specific) accumulation of zoospores of Pythium on roots of graminaceous and non-graminaceous plants. New Phytol 102:113–122

    Article  Google Scholar 

  • Nicol RW, Traquair JA, Bernards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 80:557–562

    Article  CAS  Google Scholar 

  • Nicol RW, Yousef L, Traquair JA, Bernards MA (2003) Ginsenosides stimulate the growth of soilborne pathogens of American ginseng. Phytochemistry 64:257–264

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MN, Sørensen J, Fels J, Pedersen HC (1998) Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JY, Kim Y-J, Jang M-G, Joo SC, Kwon W-S, Kim S-Y, Jung S-K, Yang D-C (2014) Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 38:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubara PA, Jones SS (2011) Seedling resistance to Rhizoctonia and Pythium in wheat chromosome group 4 addition lines from Thinopyrum spp. Can J Plant Pathol 33:415–422

    Article  Google Scholar 

  • Okubara PA, Li C, Schroeder KL, Schumacher RT, Lawrence NP (2007) Improved extraction of Rhizoctonia and Pythium DNA from wheat roots and soil samples using pressure cycling technology. Can J Plant Pathol 29:304–310

    Article  CAS  Google Scholar 

  • Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology 98:837–847

    Article  CAS  PubMed  Google Scholar 

  • Osbourn A, Goss RJM, Field RA (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Adams K (2003) Composition and distribution of Pythium communities in wheat fields in eastern Washington state. Phytopathology 93:867–873

    Article  CAS  PubMed  Google Scholar 

  • Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    Article  PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard K, Ponchet M, Blein J-P, Rey P, Tirilly Y, Benhamou N (2000) Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol 124:379–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 7:699–710

    Article  Google Scholar 

  • Raftoyannis Y, Dick MW (2006) Effect of oomycete and plant variation on zoospore cover and disease severity. J Plant Pathol 88:95–101

    Google Scholar 

  • Rey P, Benhamou N, Tirilly Y (1998) Ultrastructural and cytochemical investigation of asymptomatic infection by Pythium spp. Phytopathology 88:234–244

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico F, Binder C, Défago G, Möenne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 18:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Müller A, Miess H, Gross H (2014) Cyclic lipopeptides as antibacterial agents—potent antibiotic activity mediated by intriguing mode of actions. Int J Med Microbiol 304:37–43

    Article  CAS  PubMed  Google Scholar 

  • Schroeder KL, Paulitz TC (2006) Root diseases of wheat and barley during the transition from conventional tillage to direct seeding. Plant Dis 90:1247–1253

    Article  Google Scholar 

  • Schroeder KL, Okubara PA, Tambong JT, Lévesque CA, Paulitz TC (2006) Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time PCR. Phytopathology 96:637–647

    Article  CAS  PubMed  Google Scholar 

  • Schroeder KL, Martin FN, de Cock AWAM, Lévesque CA, Spies CFJ, Okubara PA, Paulitz TC (2013) Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Dis 97:4–20

    Article  CAS  Google Scholar 

  • Shang H, Chen J, Handelsman J, Goodman RM (1999) Behavior of Pythium torulosum zoospores during their interaction with tobacco roots and Bacillus cereus. Curr Microbiol 38:199–204

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  CAS  PubMed  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takenaka S, Nishio Z, Nakamura Y (2003) Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phytopathology 93:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Nakamura Y, Kono T, Sekiguchi H, Masunaka A, Takahashi H (2006) Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence related genes in sugar beet. Mol Plant Pathol 7:325–339

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masunaka A, Takahashi H (2008) Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time pcr and confocal laser-scanning microscopy. Phytopathology 98:187–195

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Yamaguchi K, Masunaka A, Hase S, Inoue T, Takahashi H (2011) Implications of oligomeric forms of POD-1 and POD-2 proteins isolated from cell walls of the biocontrol agent Pythium oligandrum in relation to their ability to induce defense reactions in tomato. J Plant Physiol 168:1972–1979

    Article  CAS  PubMed  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signaling. Nature 448:661–666

    Article  CAS  PubMed  Google Scholar 

  • Vallance J, Le Floch G, Déniel F, Barbier G, Lévesque CA, Rey P (2009) Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl Environ Microbiol 75:4790–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallance J, Déniel F, Barbier G, Guerin-Dubrana L, Benhamou N, Rey P (2012) Influence of Pythium oligandrum on the bacterial communities that colonize the nutrient solutions and the rhizosphere of tomato plants. Can J Microbiol 58:1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Van Buyten E, Höfte M (2013) Pythium species from rice roots differ in virulence, host colonization and nutritional profile. BMC Plant Biol 13:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd TA, Gow NAR (2002) Oomycete plant pathogens use electric fields to target roots. Mol Plant Microbe Interact 15:790–798

    Article  PubMed  Google Scholar 

  • Vijayan P, Shockey J, Lévesque C, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CJM, van Loon LC, Bakker PAHM (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Article  CAS  PubMed  Google Scholar 

  • Wulff EG, Pham ATH, Chérif M, Rey P, Tirilly Y, Hockenhill J (1998) Inoculation of cucumber roots with zoospores of mycoparasitic and plant pathogenic Pythium species: differential zoospore accumulation, colonization ability and plant growth response. Eur J Plant Pathol 104:69–76

    Article  Google Scholar 

  • Xu X-M, Jefferies P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJN, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile function of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Nathalie Walter and Joe Hulbert for expert technical assistance, and Erin Rosskopf for the gift of P. aphanidermatum. This work was supported by grants 3019-3019-4564 and 3019-3564 from the Washington Wheat Commission and by USDA ARS Project Number 2090 22000 016 00D (P.O.) and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (grant no. DE-FG02-91ER20021 (G.A.H.). G.A.H. also acknowledges support from the Michigan AgBioResearch Project MICL02278. References to a company and/or product by the USDA are only for the purposes of information and do not imply approval or recommendation of the product to the exclusion of others that may also be suitable. USDA is an equal opportunity employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. Okubara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okubara, P.A., Kang, JH., Howe, G.A. (2016). Belowground Signaling and Defence in Host–Pythium Interactions. In: Vos, C., Kazan, K. (eds) Belowground Defence Strategies in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-42319-7_8

Download citation

Publish with us

Policies and ethics