Skip to main content

Managing the Mississippi River Floodplain: Achieving Ecological Benefits Requires More Than Hydrological Connection to the River

  • Chapter
  • First Online:
Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe

Abstract

Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47, 761–776.

    Article  Google Scholar 

  • Anfinson, J. O. (2003). The river we have wrought: A history of the Upper Mississippi. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Arts, M. T., Ackman, R. G., & Holub, B. J. (2001). “Essential fatty acids” in aquatic ecosystems: A crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences, 58, 122–137.

    Article  CAS  Google Scholar 

  • Baker, J. A., Killgore, K. J., & Kasul, R. L. (1991). Aquatic habitats and fish communities in the lower Mississippi River. Reviews in Aquatic Sciences, 3, 313–356.

    Google Scholar 

  • Barko, V. A., Herzog, D. P., & O’Connell, M. T. (2006). Response of fishes to floodplain connectivity during and following a 500-year flood event in the unimpounded upper Mississippi River. Wetlands, 26(1), 244–257.

    Article  Google Scholar 

  • Becker, G. C. (1983). Fishes of Wisconsin. Madison: University of Wisconsin Press.

    Google Scholar 

  • Belby, C. S. (2009). Human impacts on sedimentation and nutrient sequestration in the Upper Mississippi River floodplain. Ph. D. Dissertation, University Wisconsin, Madison, WI. p. 331.

    Google Scholar 

  • Brauman, K. A., Daily, G. C., Duarte, T. K., & Mooney, H. A. (2007). The nature and value of ecosystem services: An overview highlighting hydrologic services. Annual Review of Environmental Resources, 32, 67–98.

    Article  Google Scholar 

  • Buijse, A. D., Coops, H., Staras, M., Jans, L. H., Van Geest, G. J., Grift, R. E., Ibelings, B. W., Oosterberg, W., & Roozen, F. C. J. M. (2002). Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology, 47, 889–907.

    Article  Google Scholar 

  • Carlson, B. D., Propst, D. B., Stynes, D. J., & Jackson, R. S. (1995). Economic impact of recreation on the Upper Mississippi River system. U.S. Army Corps of Engineers, Headquarters, Washington, DC, April 1995. Technical Report EL-95-16. 64 pp. http://www.dtic.mil/cgi-in/GetTRDoc?AD=ADA294201. Accessed 17 April 2012.

  • Cavanaugh, J. C., Richardson, W. B., Strauss, E. A., & Bartsch, L. A. (2006). Nitrogen dynamics in sediment during water level manipulation on the Upper Mississippi River. River Research and Application, 22, 651–666.

    Article  Google Scholar 

  • Connell, J. H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310.

    Article  CAS  Google Scholar 

  • De Jager, N. R. & Rohweder, J. J. (2012). Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA. Ecological Indicators, 13, 275–283.

    Article  Google Scholar 

  • Donner, S. D. & Scavia, D. (2007). How climate controls the flux of nitrogen by the Mississippi River and the development of hypoxia in the Gulf of Mexico. Limnology and Oceanography, 52, 856–861.

    Article  CAS  Google Scholar 

  • Driscoll, M. T., Davis, W. R., & Schramm, H. L., Jr. (1999). Relative abundance of catfishes in main channel and secondary channel habitats in the Lower Mississippi River. In E. R. Irwin, W. A. Hubert, C. F. Rabeni, H. L. Schramm, Jr., & T. Coon, (Eds.), Catfish 2000: Proceedings of the first international ictalurid symposium (pp. 231–238). American Fisheries Society, Symposium 24, Bethesda, Maryland.

    Google Scholar 

  • Eggleton, M. A., & Schramm, H. L., Jr. (2004). Feeding ecology and energetic relationships with habitat of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictus olivaris, in the lower Mississippi River, U.S.A. Environmental Biology of Fishes, 70, 107–121.

    Article  Google Scholar 

  • Fremling, C. R. (2005). Immortal river. The Upper Mississippi in ancient and modern times. Madison: University of Wisconsin Press.

    Google Scholar 

  • Fremling, C. R., & Claflin, T. O. (1984). Ecological history of the Upper Mississippi River. In J. G. Wiener, R. V. Anderson, & D. R. McConville (Eds.), Contaminants in the Upper Mississippi River. Proceedings of the 15th Annual Meeting of the Mississippi River Research Consortium, Butterworth Publishers, Boston, Massachusetts. pp. 5–24.

    Google Scholar 

  • Fremling, C. R., Rasmussen, J. L., Sparks, R. E., Cobb, S. P., Bryan, C. F., & Claflin, T. O. (1989). Mississippi river fisheries: A case history. 1989. In D. P. Dodge (Ed.), Proceedings of the International Large River Symposium (Vol. 106, pp. 309–351). Canadian Special Publication of Fisheries and Aquatic Sciences.

    Google Scholar 

  • Galat, D. L., Fredrickson, L. H., Humburg, D. D., Bataille, K. J., Bodie, J. R., Dohrenwend, J., et al. (1998). Flooding to restore connectivity of regulated, large-river wetlands. BioScience, 48, 721–733.

    Article  Google Scholar 

  • Galat, D. L., Barko, J. W., Bartell, S. M., Davis, M., Johnson, B. L., Lubinski, K. S., Nestler, J. M., & Wilcox, D. B. (2007). Environmental science panel report: establishing system-wide goals and objectives for the Upper Mississippi River System. Upper Mississippi River System Navigation and Ecosystem Sustainability Program Environmental Report 6. U.S. Army Corps of Engineers, Rock Island, St. Louis, and St. Paul Districts. http://www2.mvr.usace.army.mil/UMRS/NESP/Documents/NESP%20ENV%20Rpt%206%20-%20SGO_Report_11-1-07.pdf. Accessed 17 April 2012.

  • Garvey, V., Ickes, B., & Zigler, S. (2010). Challenges in merging fisheries research and management: The Upper Mississippi river experience. Hydrobiologia, 640, 125–144.

    Article  Google Scholar 

  • Gelwicks, G. T. (1995). Fish movement between the lower Missouri River and a managed floodplain wetland in Missouri. Master’s thesis. University of Missouri, Columbia.

    Google Scholar 

  • Gent, R., Pitlo, J., Jr., & Boland, T. (1995). Largemouth bass response to habitat and water quality rehabilitation in a backwater of the Upper Mississippi River, North American. Journal of Fisheries Management, 15(4), 784–793.

    Article  Google Scholar 

  • Goolsby, D. A., Battaglin, W. A., Lawrence, G. B., Artz, R. S., Aulenbach, B. T., Hooper, R. P., Keeney, D. R., & Stensland, G. J. (1999). Flux and sources of nutrients in the Mississippi-Atchafalaya River basin: Topic 3. Report for the Integrated Assessment on hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program. p. 130.

    Google Scholar 

  • Górski, K., De Leeuw, J. J., Winer, H. V., Vekhov, D. A., Minin, A. E., Buijse, A. D., & Nagelkerke, L. A. J. (2011). Fish recruitment in a large, temperate floodplain: The importance of annual flooding, temperature and habitat complexity. Freshwater Biology, 56, 1–16

    Article  Google Scholar 

  • Groffman, P. M., Holland, E. A., Myrold, D. D., Robertson, G. P., & Zou, X. (1999). Denitrification. In G. P. Robertson, C. S. Bloe, & P. Sollins (Eds.), Standard methods for long-term ecological research (pp. 272–288). Oxford: Oxford University Press.

    Google Scholar 

  • Gutreuter, S. (2004). Challenging the assumption of habitat limitation: An example from centrarchid fishes over an intermediate spatial scale. River Research and Applications, 20, 413–425.

    Article  Google Scholar 

  • Gutreuter S, Bartels, A. D., Irons, K., Sandheinrich, M. B. (1999). Evaluation of the flood-pulse concept based on statistical models of growth of selected fishes of the upper Mississippi River system. Canadian Journal of Fisheries and Aquatic Sciences, 56, 2282–2291.

    Article  Google Scholar 

  • Hein, T., Baranyi, C., Reckendorfer, W., & Schiemer, F. (2004). The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria. Science of the Total Environment, 328, 207–218.

    Article  CAS  Google Scholar 

  • Houser, J. N., & Richardson, W. B. (2010). Nitrogen and phosphorus in the Upper Mississippi River: Transport, processing and effects on the river ecosystem. Hydrobiologia, 640, 71–88.

    Article  CAS  Google Scholar 

  • Ickes, B. S., Bowler, M. C., Bartels, A. D., Kirby, D. J., DeLain, S., Chick, J. H., Barko, V. A., Irons, K. S., & Pegg, M. A. (2005). Multi-year Synthesis of the Fish Component from 1993 to 2002 for the long term resource monitoring program. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. LTRMP 2005 T005. 60 p. + Appendixes A–E.

    Google Scholar 

  • James, W. F., Barko, J. W., & Eakin, H. L. (2004). Impacts of sediment dewatering and rehydration on sediment nitrogen concentrations and macrophyte growth. Canadian Journal of Fisheries and Aquatic Sciences, 61, 538–546.

    Article  Google Scholar 

  • James, W. F., Richardson, W. B., & Soballe, D. M. (2008a). Contribution of sediment fluxes and transformations to the summer nitrogen budget of an upper Mississippi River backwater system. Hydrobiologia, 598, 95–107.

    Article  CAS  Google Scholar 

  • James, W. F., Richardson, W. B. & Soballe, D. M. (2008b). Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters. River Research and Application, 24, 1206–1217.

    Article  Google Scholar 

  • Janáč, M. M., Ondračková, M., Jurajda, P., Valová, Z., & Reichard, M. (2010). Flood duration determines the reproduction success of fish in artificial oxbows in a floodplain of a potamal river. Ecology of Freshwater Fish, 19, 1–12.

    Article  Google Scholar 

  • Janvrin, J. A. (2005). A comparison of the pre- and post-impoundment fish assemblage of the Upper Mississippi River (Pools 4–13) with an emphasis on centrarchids. American Fishery Society Symposium, 45, 323–343.

    Google Scholar 

  • Johnson, B. L., & Hagerty, K. H. (Eds.). (2008). Status and trends of selected resources of the Upper Mississippi River System. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, December 2008. Technical Report LTRMP 2008-T002. 102 pp + Appendixes A–B.

    Google Scholar 

  • Johnson, B. L., Knights, B. C., Barko, J. W., Gaugush, R. F., Soballe, D. M., & James, W. F. (1998). Estimating flow rates to optimize winter habitat for centrarchid fishes in Mississippi River (USA) backwaters. Regulated Rivers, 14, 499–510.

    Article  Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110–127.

    Google Scholar 

  • Justic, D., Rabalais, N. R., & Turner, R. E. (2005). Coupling between climate variability and coastal eutrophication: Evidence and outlook for the northern Gulf of Mexico. Journal of Sea Research, 54, 25–35.

    Article  Google Scholar 

  • Kern, J., Darwich, A., Furch, K., & Junk, W. J. (1996). Seasonal denitrification in flooded and exposed sediments from the Amazon floodplain at Lago Camaleao. Microbial Ecology, 32, 47–57.

    Article  Google Scholar 

  • King, A. J., Humphries, P., & Lake, P. S. (2003). Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences, 60, 773–786.

    Article  Google Scholar 

  • Kleeberg, A., & Heidenreich, M. (2004). Release of nitrogen and phosphorus from macrophyte stands of summer dried out sediments of a eutrophic reservoir. Archives fur Hydrobiology, 159, 115–136.

    Article  CAS  Google Scholar 

  • Knights, B. C., Johnson, B. L., & Sandheinrich, M. B., (1995). Response of bluegill and black crappie to dissolved oxygen, temperature, and current in backwater lakes of the upper Mississippi River during winter. North American Journal of Fisheries Management, 15, 390–399.

    Article  Google Scholar 

  • Knox, J. C. (2000). Sensitivity of modern and Holocene floods to climate change. Quaternary Science Reviews, 19, 439–457.

    Article  Google Scholar 

  • Knox, J. C. (2006). Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology, 79, 286–310.

    Article  Google Scholar 

  • Koel, T. M. (2004). Spatial variation in fish species richness of the Upper Mississippi River System. Transactions of the American Fisheries Society, 133, 984–1003.

    Article  Google Scholar 

  • Kreiling, R. M., Richardson, W. B., Cavanaugh, J. C., & Bartsch, L. A. (2010). Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: The role of rooted aquatic vegetation. Biogeochemistry, 104, 267–274.

    Google Scholar 

  • Langrehr, H. A., Gray, B. R., & Janvrin, J. A. (2007). Evaluation of aquatic macrophyte community response to island construction in the Upper Mississippi River. Lake and Reservoir Management, 23, 313–320.

    Article  Google Scholar 

  • Lewis, W. M. Jr., Hamilton, S. K., Lasi, M. A., Rodríguez, M., & Saunders, J. F., III. (2000). Ecological determinism on the Orinoco floodplain. Bioscience, 50(8), 681–692.

    Article  Google Scholar 

  • Maurer, W. R., Claflin, T. O., Rada, R. G., & Rogala, J. T. (1995). Volume loss and mass balance for selected physicochemical constituents in Lake Pepin, Upper Mississippi River, USA. Regulated Rivers: Research and Management, 11, 175–184.

    Article  Google Scholar 

  • McClain, M. E., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.

    Article  CAS  Google Scholar 

  • McGuiness, D. (Ed.). (2000). A river that works and a working river. Upper Mississippi River Conservation Committee, Rock Island, Illinois, p. 40. http://www.umrcc.org/Reports/Publications/A%20River%20That%20Works%20(Condensed).pdf. Accessed 17 April 2012.

  • Meade, R. H., & Moody, J. A. (2010). Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrological Processes, 24, 35–49.

    Google Scholar 

  • Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to the Anthropocene syndromes. Philosophical Transactions of the Royal Society of London B, 358, 1935–1955.

    Article  CAS  Google Scholar 

  • Minnesota Department of Natural Resources. (2011). Asian carp action plan. Report of the Ad Hoc Asian Carp Task Force. p. 16. http://files.dnr.state.mn.us/natural_resources/invasives/aquaticanimals/asiancarp/asiancarpactionplan.pdf Accessed 6 Feb 2015.

  • Miranda, L. E. (2005). Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River. Transactions of the American Fisheries Society, 134, 1480–1489.

    Article  Google Scholar 

  • Mitsch, W. J., Day, J. W. Jr., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., & Wang, N. (2001). Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. BioScience, 51, 373–388.

    Article  Google Scholar 

  • Mitsch, W. J., Day, J. W., Zhang, Li., & Lane, R. R. (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River basin. Ecological Engineering, 24, 267–278.

    Article  Google Scholar 

  • Pflieger, W. L. (1975). The fishes of Missouri. Jefferson City: Missouri Department of Conservation.

    Google Scholar 

  • Pitlo, J., & Rasmussen, J. (Eds.). (2004). A compendium of fishery information on the Upper Mississippi River. Upper Mississippi River Conservation Committee, Rock Island, Illinois. p. 265. http://www.umrcc.org/Reports/publications/FisheriesCompendium.pdf. Accessed 17 April 2012.

  • Poe, A. C., Piehler, M. F., Thompson, S. P., & Paerl, H. W. (2003). Denitrification in a constructed wetland receiving agricultural runoff. Wetlands, 23, 817–826.

    Article  Google Scholar 

  • Poff, N. L. (2002). Ecological response to and management of increased flooding caused by climate change. Philosophical Transactions of the Royal Society of London. A., 360, 1497–1510.

    Article  Google Scholar 

  • Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The natural flow regime: A paradigm for river conservation and restoration. BioScience, 47, 769–784.

    Article  Google Scholar 

  • Poudevigne, I., Alard, D., Leuven, R. S. E. W., & Nienhuis, P. H. (2002). A systems approach to river restoration: A case study in the lower Seine Valley, France. River Research and Applications, 18, 239–247.

    Article  Google Scholar 

  • Rabalais, N. N., Turner, R. E., & Scavia, D. (2002). Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience, 52, 129–142.

    Article  Google Scholar 

  • Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Platon, E., & Parsons, M. L. (2007). Sediments tell the history of eutrophication in the northern Gulf of Mexico. Ecological Applications, 17, S129–S143.

    Article  Google Scholar 

  • Randall, G. W. & Mulla, D. J. (2001). Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality, 30, 337–344.

    Article  CAS  Google Scholar 

  • Richardson, W. B., Strauss, E. A., Bartsch, L. A., Monroe, E. M., Cavanaugh, J. C., Vingum, L., & Soballe, D. M. (2004). Denitrification in the Upper Mississippi River: Rates, controls, and contribution to nitrate flux. Canadian Journal of Fisheries and Aquatic Science, 61, 1102–1112.

    Article  CAS  Google Scholar 

  • River Resources Forum. (2004). Environmental pool plans: Mississippi River, Pools 1–10. U.S. Army Corps of Engineers, St. Paul District, St. Paul, Minnesota. http://www.mvp.usace.army.mil/docs/poolplans/EPP_Dec2003.pdf. Accessed 17 April 2012.

  • River Resources Forum. (2007). Summary of Results of the Pool 5 and Pool 8 Drawdowns on the Upper Mississippi River. Water Level Management Task Force Report, July 2007. http://www.fws.gov/midwest/UpperMississippiRiver/Documents/Drawdownsummary.pdf. Accessed 17 April 2012.

  • Rodriguez, M. A., & Lewis, W. M. (1997). Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs, 67, 109–128.

    Article  Google Scholar 

  • Rogala, J. T. (1996). Surficial sediment characteristics in Pools 4 and 8, Upper Mississippi River. U.S. Geological Survey, Environmental Management Technical Center, Onalaska, Wisconsin. LTRMP 96-T006. 22 pp. (NTIS #PB97-129365).Rutherford, D. A., Kelso, W. E., Bryan, C. F., & Constant, G. C. (1995). Influence of physicochemical characteristics on annual growth increments of four fishes from the lower Mississippi River. Transactions of the American Fisheries Society, 134, 687–697.

    Article  Google Scholar 

  • Sass, G. G., Cook, T. R., Irons, K. S., McClelland, M. A., Michaels, N. N., O’Hara, T. M., & Stroub, M. R. (2010). A mark-recapture population estimate for invasive silver carp (Hypophthalmichthys molitrix) in the La Grange Reach, Illinois River. Biological Invasions, 12, 433–436.

    Article  Google Scholar 

  • Schramm, H. L., Jr. (2004). Status and management of fisheries in the Mississippi River. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries (Vol. 1), Welcomme R., T. Petr (eds). RAP Publication 2004/16. Bangkok, Thailand; pp. 301–333.

    Google Scholar 

  • Schramm, H. L., & Eggleton, M.A. (2006). Applicability of the flood-pulse concept in a temperate floodplain river ecosystem: Thermal and temporal components. River Research and Applications, 22, 543–553.

    Article  Google Scholar 

  • Schramm, H. L., Jr., Eggleton, M. A., & Minnis, R. B. (1999). Spatial analysis of floodplain habitat critical to lower Mississippi River fishes. U.S. Geological Survey, Mississippi Cooperative Fish and Wildlife Research Unit, Mississippi State, Mississippi.

    Google Scholar 

  • Schramm, H. L., Cox, M. S., Tietjen, T. E., & Ezell, A. W. (2009). Nutrient dynamics in the Lower Mississippi River floodplain: Comparing present and historic hydrologic conditions. Wetlands, 29, 476–487.

    Article  Google Scholar 

  • Sommer, T. R., Harrell, W. C., Kurth, R., Feyrer, F., Zeug, S. C., & O’Leary, G. (2004). Ecological patterns of early life stages of fishes in a large river-floodplain of the San Francisco estuary. American Fisheries Society Symposium, 39, 111–123.

    Google Scholar 

  • Sparks, R. E., Nelson, J. C., & Yin, Y. (1998). Naturalization of the flood regime in regulated rivers: The case of the upper Mississippi River. BioScience, 48, 706–720.

    Article  Google Scholar 

  • Stanford J. A., Ward, J. V., Liss, W. J., Frissell, C. A., Williams, R. N., Lichatowich, J. A., & Coutant, C.C. (1996). A general protocol for restoration of regulated rivers. Regulated Rivers: Research & Management, 12, 391–413.

    Article  Google Scholar 

  • Steuck, M.J., Yess, S., Pitlo, J., Van Vooren, A., & Rasmussen, J. (2010). Distribution and relative abundance of Upper Mississippi River Fishes. Upper Mississippi River Conservation Committee, Onalaska, Wisconsin. p. 21. http://www.umrcc.org/Reports/Fish%20Section/UMRCC%20Fish%20Distribution%20Abundance%202010.pdf. Accessed 17 April 2012.

  • Strauss, E. A., Richardson, W. B., Bartsch, L. A., Cavanaugh, J. C., Bruesewitz, D. A., Imker, H., Heinz, J., & Soballe, D. M. (2004). Nitrification in the Upper Mississippi River: Patterns, controls, and contribution to the NO3- budget. Journal of the North American Benthological Society, 23, 1–14.

    Article  Google Scholar 

  • Strauss, E. A., Richardson, W. B., Cavanaugh, J. C., Bartsch, L. A., Kreiling, R. M., & Standorf, A. J. (2006). Variability and regulation of denitrificaiton in an Upper Mississippi River backwater. Journal of the North American Benthological Society, 25, 596–606.

    Article  Google Scholar 

  • Strauss, E. A., Richardson, W. B., Bartsch, L. A., & Cavanaugh, J. C. (2011). Effect of habitat type on in-stream nitrogen loss in the Mississippi River. River Systems, 19, 261–269.

    Article  CAS  Google Scholar 

  • Theiling, C. H. (1995). Habitat rehabilitation on the Upper Mississippi River. Regulated Rivers: Research and Management, 11, 227–238.

    Article  Google Scholar 

  • Theiling, C. H., & Nestler, J. M. (2010). River stage response to alteration of Upper Mississippi River channels, floodplains, and watersheds. Hydrobiologia, 640, 17–47.

    Article  Google Scholar 

  • Theis, L.J., & Knox, J.C. (2003). Spatial and temporal variability in floodplain backwater sedimentation, Pool Ten, Upper Mississippi River. Physical Geography, 24, 337–353.

    Article  Google Scholar 

  • Turner, R. E., & Rabalais, N. N. (2003). Linking landscape and water quality in the Mississippi River basin for 200 years. BioScience, 53, 563–572.

    Article  Google Scholar 

  • Turner, R. E., Rabalais, N. N., Alexander, R. B., McIsaac, G., & Howarth, R. W. (2007). Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the Northern Gulf of Mexico. Estuaries and Coasts, 30, 773–790.

    Article  CAS  Google Scholar 

  • UMRR EMP (Upper Mississippi River Restoration—Environmental Management Program). (1989). 1989 Land Cover/Land Use: Upper Mississippi River System [computer file]. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. http://umesc.usgs.gov/data_library/land_cover_use/1989_lcu_umesc.html. Accessed 6 April 2012.

  • UMRR_EMP. (1999). 1890 Land Cover/Land Use: Upper Mississippi River System [computer file]. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. http://umesc.usgs.gov/data_library/land_cover_use/1890s_lcu_mrc.html. Accessed 6 April 2012.

  • UMRR EMP. (2006). Environmental Design Handbook. U.S. Army Corps of Engineers, Mississippi Valley Division, Vicksburg, Mississippi. http://www.mvr.usace.army.mil/EMP/FY07%20EMP%20Design%20Handbook/EMP%20Environmental%20Design%20Handbook%20August%202006.pdf. Accessed 17 April 2012.

  • UMRR EMP. (2010). Upper Mississippi River Restoration Environmental Management Program: 2010 Report to Congress. U.S. Army Corps of Engineers, St. Paul, Rock Island, and St. Louis Districts. http://www.mvr.usace.army.mil/Portals/48/docs/Environmental/EMP/EMP_RTC_2010.pdf. Accessed 17 Dec 2012.

  • U.S. Army Corps of Engineers. 2012. Commercial Fisheries Baseline Economic Assessment—U.S. Waters of the Great Lakes, Upper Mississippi River, and Ohio River Basins. Online report of the U.S. Army Corps of Engineers’ Great Lakes and Mississippi River Interbasin Study Team. http://glmris.anl.gov/documents/docs/Commercial_Fisheries_Report.pdf. Accessed 17 Dec 2012.

  • U.S. Fish and Wildlife Service. 2006. Upper Mississippi River National Wildlife and Fish Refuge comprehensive conservation plan. U.S. Fish and Wildlife Service Midwest Region. Bloomington, Minnesota. 228 p. http://www.fws.gov/midwest/planning/uppermiss/CCP/CCP.pdf. Accessed 28 Dec 2012.

  • U. S. Geological Survey. 1999. Ecological Status and Trends of the Upper Mississippi River System 1998: A Report of the Long Term Resource Monitoring Program. Report LTRMP 99-T001. U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin. 236 p. http://www.umesc.usgs.gov/reports_publications/status_and_trends.html. Accessed 17 April 2012.

  • Ward, J. V. (1998). Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83(3), 269–278.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems (3rd ed., p. 855). San Diego: Academic Press.

    Google Scholar 

  • Weiner, J. G., Fremling, C. R., Korschgen, C. E., Kenow, K. P., Kirsch, E. M., Rogers, S.J., Yin, Y., & Sauer, J. S. (1998). Mississippi River. In M. J. Mac, P. A. Opler, C. E. Puckett Haecker, & P. D. Doran (Eds.), Status and trends of the nation’s biological resources (pp. 351–384) Reston: U.S. Geological Survey.

    Google Scholar 

  • Wiens, J. A. (2002). Riverine landscapes: Taking landscape ecology into the water. Freshwater Biology, 47, 501–515.

    Article  Google Scholar 

  • Winemiller, K. O., & Jepsen D. B. (1998). Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology, 53(Supplement A), 267–296.

    Article  Google Scholar 

  • Woltemade, C. J., & Woodward, J. 2008. Nitrate removal in a restored spring-fed wetland, Pennsylvania, USA. Journal of the American Water Resources Association, 44, 222–234.

    Article  Google Scholar 

Download references

Acknowledgments

J.C. Nelson and Robert Kratt provided assistance with graphics. James Rogala provided unpublished hydrology data. Barry Johnson and Jeff Janvrin provided useful reviews of earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Schramm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer New York

About this chapter

Cite this chapter

Schramm, H., Richardson, W., Knights, B. (2015). Managing the Mississippi River Floodplain: Achieving Ecological Benefits Requires More Than Hydrological Connection to the River. In: Hudson, P., Middelkoop, H. (eds) Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2380-9_8

Download citation

Publish with us

Policies and ethics