Skip to main content

An Overview of Active Materials Utilized in Smart Structures

  • Chapter
  • First Online:
Piezoelectric-Based Vibration Control

Abstract

This chapter provides a brief overview of working principles, physical properties, constitutive models and the practical applications of a few select active materials as the building blocks of many smart structures. More specifically, the following active materials are discussed in this chapter: piezoelectric and pyroelectric materials, electrorheological and magnetorheological fluids, electrostrictive and magnetostrictive materials, and finally shape memory alloys (SMA). In order not to disturb the focus of the book, only selective but essential materials are reviewed in this chapter. We refer interested readers to cited references and other dedicated books on smart materials and structures (e.g., Srinviasan and MacFarland 2001; Culshaw 1996; Gandhi and Thompson 1992; Banks et al. 1996; Clark et al. 1998; Suleman 2001; Leo 2007; Preumont 2002; Janocha 1999; Tzou and Anderson 1992; Gabert and Tzou 2001), vibration control (Moheimani and Fleming 2006; Gawronski 2004; Tao and Kokotovic 1996), sensors and actuators (Busch-Vishniac 1999) and piezoelectric (Yang 2005; Moheimani and Fleming 2006; Ballas 2007).

While studying these and other active materials, piezoelectric materials stand out as the most commonly used active materials in many mechatronic and vibration-control systems, the areas that are of great importance to the subject of this book. Consequently, two separate chapters are dedicated to these materials and present, in much more detail, the concept of piezoelectricity and constitutive models of piezoelectric materials along with their practical applications as sensors and actuators (Chap. 6 and 7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As mentioned earlier, an extensive discussion about piezoelectricity and piezoelectric materials will be given in the next two chapters, and only a brief overview is presented here.

  2. 2.

    In order to maintain the focus of this chapter, we limit the derivations of the constitutive models to one-dimensional cases for all the active materials considered in this chapter. Otherwise, the required mathematical preliminaries and notations that must be covered for general three-dimensional medium will be very extensive and outside of the scope of this book.

  3. 3.

    Most parts of this section may have come directly from our book chapter on the subject matter (Jalili and Esmailzadeh 2005).

References

  • Austin SA (1993) The vibration damping effect of an electrorheological fluid. ASME J Vib Acoust 115(1):136–140

    Article  Google Scholar 

  • Ballas RG (2007) Piezoelectric multilayer beam bending actuators: Static and dynamic behavior and aspects of sensor integration, Springer

    Google Scholar 

  • Bar-Cohen Y, Sherrit S, Lih SS (2001) Characterization of the electromechanical properties of EAP materials. SPIE’s eighth annual international symposium on smart structures and materials, pp 4329–4343

    Google Scholar 

  • Bashash S, Vora K, Jalili N, Evans PG, Dapino MJ, Slaughter J (2008c) Modeling major and minor hysteresis loops in Galfenol-driven micro-positioning actuators using a memory-based hysteresis framework. 2008 ASME Dynamic Systems and Control Conference (DSCC’08). Ann Arbor, MI, October 20–22

    Google Scholar 

  • Batt RJ (1981) Application of pyroelectric devices for power and reflectance measurements. Ferroelectrics 34:11–14, Gordon and Breach, New York

    Google Scholar 

  • Berlincourt D (1981) Piezoelectric ceramics: Characteristics and applications. J Acoust Soc Am. 70:1586–1595

    Article  Google Scholar 

  • Busch-Vishniac IJ (1999) Electromechanical sensors and actuators, Springer, New York

    Book  Google Scholar 

  • Cady WG (1964) Piezoelectricity, Dover, New York

    Google Scholar 

  • Carlson JD (1994) The promise of controllable fluids. In: Borgmann H, Lenz K (eds) Actuator 94, fourth international conference on new actuators, Axon Technologies Consult GmbH, pp 266–270

    Google Scholar 

  • Carlson JD, Sprecher AF, Conrad H (eds) (1989) Elecrorheological fluids. Technomic, Lancaster, PA

    Google Scholar 

  • Chai WK, Tzou HS (2002) Constitutive modeling of controllable electrostrictive thin shell structures. ASME international mechanical engineering congress, Symposium on advances of solids and structures. New Orleans, LA, November 17–22

    Google Scholar 

  • Chen W, Lupascu DC, Rodel J, Lynch CS (2001) Short crack R-curves in ferroelectric and electrostrictive PLZT. J Am Ceram Soc 84(3):593–597

    Article  Google Scholar 

  • Choi SB (1999) Vibration control of flexible structures using ER dampers. ASME J Dyn Syst Measur Control 121:134–138

    Article  Google Scholar 

  • Culshaw (1996) Smart structures and materials, Artech House

    Google Scholar 

  • Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclines. Comptes Rendus de l’Académie des Sciences, Paris 91:294–295

    Google Scholar 

  • Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324

    Article  Google Scholar 

  • DeSimone A, James RD (2002) A constrained theory of magnetoelasticity. J Mech Phys Solids 50:283–320

    Article  MathSciNet  MATH  Google Scholar 

  • Dimarogonas-Andrew D, Kollias A (1993) Smart electrorheological fluid dynamic vibration absorber. Intell Struct Mater Vib ASME Des Div 58:7–15

    Google Scholar 

  • Duclos TG (1988) Design of devices using electrorheological fluids. Future Transp Techn Conf Exp SAE Paper 881134, San Francisco, CA, pp 8–11

    Google Scholar 

  • Dyer PE, Srinivasan R (1989) Pyroelectric detection of ultraviolet laser ablation products from polymers. J Appl Phys 66:2608–2611

    Article  Google Scholar 

  • Galvagni J, Rawal B (1991) A comparison of piezoelectric and electrostrictive actuator stacks. SPIE Adapt Adapt Opt Comp 1543:296–300

    Article  Google Scholar 

  • Gawronski WK (2004) Advanced structural dynamics and active control of structures, Springer, New York

    Book  Google Scholar 

  • Ginder JM, Ceccio SL (1995) The effect of electrical transients on the shear stresses in electrorheological fluids. J Rheol 39(1):211–234

    Article  Google Scholar 

  • Hofmann G, Walther L, Schieferdecker J, Neumann N, Norkus V, Krauss M, Budzier H (1991) Construction, properties and application of pyroelectric single-element detectors and 128-element CCD linear arrays. Sensor Actuator 25–27:413–416

    Article  Google Scholar 

  • Hu YT, Yang JS, Jiang Q (2000) Wave propagation in electrostrictive materials under biasing fields. IEEE Ultrason Symp 7803:6365

    Google Scholar 

  • Hu YT, Yang JS, Jiang Q (2004) Wave propagation in electrostrictive materials under biased fields. Acta Mechancia Solida Sinica 17(3) ISSN 0894–9166

    Google Scholar 

  • Hussain T, Baig AM, Saadawi TN, Ahmed SA (1995) Infrared pyroelectric sensor for detection of vehicle traffic using digital signal processing techniques. IEEE Trans Veh TEchnol 44:683–688

    Article  Google Scholar 

  • Jalili N (2001a) An infinite dimensional distributed base controller for regulation of flexible robot arms. ASME J Dyn Sys, Measur Cont 123(4):712–719

    Article  Google Scholar 

  • Jalili N, Wagner J, Dadfarnia M (2003) A piezoelectric driven ratchet actuator mechanism with application to automotive engine valves. Int J Mechatron. 13:933–956.

    Article  Google Scholar 

  • Jalili N (2003) Nanotube-based actuator and sensor paradigm: conceptual design and challenges. Proceedings of 2003 ASME international mechanical engineering congress and exposition, Washington, DC

    Google Scholar 

  • Jalili N, Esmailzadeh E (2005) Vibration control, chapter 23 of the vibration and shock handbook, CRC Press LLC, ISBN/ISSN: 0-84931580, 23:1047–1092

    Google Scholar 

  • Jiang Q, Kuang ZB (2004) Stress analysis in two dimensional electrostrictive material with an elliptic rigid conductor. Eur J Mech A/Solids 23:945–956

    Article  MathSciNet  MATH  Google Scholar 

  • Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M (2004) Tensile properties of magnetostrictive iron-gallium alloys. Acta Materialia 52:5043–5050

    Article  Google Scholar 

  • Lang SB (1982) Sourcebook of pyroelectricity. Gordon and Breach, New York

    Google Scholar 

  • Lee CJ et al (1999) Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition. Appl Phys Lett 75:1721

    Article  Google Scholar 

  • Leo DJ (2007) Smart material systems: analysis, design and control. Wiley, New York

    Book  Google Scholar 

  • Mele EJ, Kral P (2002) Electric polarization of heteropolar nanotubes as a geometric phase. Phys Rev Lett 88:568031–568034

    Article  Google Scholar 

  • Mindlin RD (1961) On the equations of motion of piezoelectric crystals. Problems of Continuum Mechanics, NI Muskhelishvili 70th Birthday Vol, SIAM Philadelphia, 70:282–290

    Google Scholar 

  • Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping, Springer, New York

    MATH  Google Scholar 

  • Munch WV, Thiemann U (1991) Pyroelectric detector array with PVDF on silicon integrated circuit. Sensor Actuator 25–27:167–172

    Google Scholar 

  • Petek NK, Romstadt DL, Lizell MB, Weyenberg TR (1995) Demonstration of an automotive semi-active suspension using electro-rheological fluid. SAE Paper No. 950586

    Google Scholar 

  • Piquette JC, Forsythe SE (1998) Generalized material model for lead magnesium niobate (PMN) and an associated electromechanical equivalent circuit. J Acoust Soc Am 104

    Google Scholar 

  • Porter SG (1981) A brief guide to pyroelectricity. Gordon and Breach, New York

    Google Scholar 

  • Preumont A (2002) Vibration control of active structures: An introduction, 2nd edn. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Ren W, Masys AJ, Yang G, Mukherjee BK (2002) Nonlinear strain and DC bias induced piezoelectric behavior of electrostrictive lead magnesium niobate-lead titanate ceramics under high electric fields. J Phys D, Appl Phys 35:1550–1554

    Article  Google Scholar 

  • Salehi-Khojin A, Jalili N (2008a) A comprehensive model for load transfer in nanotube reinforced piezoelectric polymeric composites subjected to electro-thermo-mechanical loadings. J Composites Part B Eng 39(6):986–998

    Article  Google Scholar 

  • Salehi-Khojin A, Hosseini MR and Jalili N (2009a) Underlying mechanics of active nanocomposites with tunable properties. Composites Sci Technol 69:545–552

    Article  Google Scholar 

  • Spencer BF, Yang G, Carlson JD, Sain MK (1998) Smart dampers for seismic protection of structures: A full-scale study. Proceedings of 2nd world conference on structure control, Kyoto, Japan, June 28–July 1

    Google Scholar 

  • Suleman (2001) Smart structures: Applications and related technologies, Edited, Springer, New York

    Google Scholar 

  • Takagi T (1996) Recent research on intelligent materials. J Intell Mater Syst Struct 7:346–357

    Article  Google Scholar 

  • Tao G, Kokotovic PV (1996) Adaptive control of systems with actuator and sensor nonlinearities, Wiley, New Jersey

    MATH  Google Scholar 

  • Tzou HS, Anderson GL (eds) (1992) Intelligent structural systems, Kluwer Academic Publishers

    Google Scholar 

  • Tzou HS, Ye R (1996) Pyroelectric and thermal strain effects in piezoelectric (PVDF and PZT) devices. Mech Syst Signal Pr 10:459–479

    Article  Google Scholar 

  • Tzou HS, Chai WK, Arnold SM (2003) Micro-structronics and control of hybrid electrostrictive/piezoelectric thin shells. ASME International Mechanical Engineering Congress, Symposium on Adaptive Structures and Material Systems. Washington DC, November 16–21

    Google Scholar 

  • Tzou HS, Lee HJ, Arnold SM (2004) Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech of Adv Mat Struc 11:367–393

    Article  Google Scholar 

  • Wang KW, Kim YS, Shea DB (1994) Structural vibration control via electrorheological-fluid-based actuators with adaptive viscous and frictional damping. J Sound Vib 177(2):227–237

    Article  MATH  Google Scholar 

  • Weiss KD, Carlson JD, Nixon DA (1994) Viscoelastic properties of magneto- and electro-rheological fluids. J Intell Mater Syst Struct 5:772–775

    Article  Google Scholar 

  • Wun-Fogle M, Restorff JB, Clark AE (2006) Magnetomechanical coupling in stress-annealed Fe–Ga (Galfenol) alloys. IEEE Trans Magn 42(10)

    Google Scholar 

  • Wun-Fogle M, Restorff JB, Clark AE, Dreyer E, Summers E (2005) Stress annealing of Fe–Ga transduction alloys for operation under tension and compression. J Appl Phys 97:10M301

    Google Scholar 

  • Yang J (2005) An Introduction to the theory of piezoelectricity, Springer, Berlin, Heidelberg

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Jalili .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jalili, N. (2010). An Overview of Active Materials Utilized in Smart Structures. In: Piezoelectric-Based Vibration Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0070-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0070-8_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0069-2

  • Online ISBN: 978-1-4419-0070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics