Skip to main content
Log in

Enhancement of the polar coercive force for annealed Co/Ir(111) ultrathin films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The alloy formation and the magnetic properties of Co/Ir(111) ultrathin films have been investigated. As the temperature is increased above 400 K, interdiffusion of Co and the Ir substrate occurs. Due to a compositional change in the surface layers, the polar coercive force is greatly enhanced. At temperatures above 600 K, magnetic hysteresis appears only in the polar configuration. This shows that the easy axis of the magnetization of Co/Ir(111) may be stabilized in the direction of the surface normal by thermal-annealing treatments. From systematic investigations of Co/Ir(111) ultrathin films thinner than 4 monolayers, a magnetic phase diagram has been established. According to the compositional changes and related magnetic properties, the phase diagram can be separated into three regions. In region I at temperatures below 400 K, Co films are ferromagnetic. In region II where atomic interdiffusion occurs in the surface layers, an enhanced polar coercive force is observed. The phase transition from phase I to II is related to the interdiffusion between the Co overlayer and the iridium substrate. In region III for low coverage or at high temperatures, a nonferromagnetic behavior is observed. The phase transition from phase II to III is mainly due to the reduced atomic percent of cobalt in the Co-Ir alloy and to the lowered Curie temperature caused by a reduction in the thickness of the magnetic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon and D. Givord, Science 315, 349 (2007).

    Article  ADS  Google Scholar 

  2. J. S. Tsay and Y. D. Yao, Appl. Phys. Lett. 74, 1311 (1999).

    Article  ADS  Google Scholar 

  3. J. R. Hampton, J. L. Martinez-Albertos and H. D. Abruna, Langmuir 19, 4309 (2003).

    Article  Google Scholar 

  4. H. L. Wu, M. C. Zei and S. L. Yau, J. Phys. Chem. C 114, 20062 (2010).

    Article  Google Scholar 

  5. A. Fert, Thin Solid Films 517, 2 (2008).

    Article  ADS  Google Scholar 

  6. C. S. Shern, J. S. Tsay, H. Y. Her, Y. E. Wu and R. H. Chen, Surf. Sci. Lett. 429, L497 (1999).

    Article  ADS  Google Scholar 

  7. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).

    Article  ADS  Google Scholar 

  8. W. C. Lin, Y. Y. Huang, T. Y. Ho and C. H. Wang, Appl. Phys. Lett. 17, 172502 (2011).

    Article  ADS  Google Scholar 

  9. S. R. Lee, S. Yang, Y. K. Kim and J. G. Na, Appl. Phys. Lett. 78, 4001 (2001).

    Article  ADS  Google Scholar 

  10. J. G. Chen, C. A. Menning and M. B. Zellner, Surf. Sci. Rep. 63, 201 (2008).

    Article  ADS  Google Scholar 

  11. S. Giri, M. Patra and S. Majumdar. J. Phys.: Condens. Matter 23, 073201 (2011).

    Article  ADS  Google Scholar 

  12. S. Yamaguchi, K. Morimoto, J. Fukuda and H. Suzuki, Biosens. Bioelectron. 24, 2171 (2009).

    Article  Google Scholar 

  13. Y. Y. Hou, J. M. Hu, L. Liu, J. Q. Zhang and C. N. Cao, Electrochimica Acta 51, 6258 (2006).

    Article  Google Scholar 

  14. J. S. Tsay and Y. S. Chen, Surf. Sci. 600, 3555 (2006).

    Article  ADS  Google Scholar 

  15. H. Yanagihara, E. Kita and M. B. Salamon, Phys. Rev. B 60, 12957 (1999).

    Article  ADS  Google Scholar 

  16. A. Dinia, M. Stoffel, K. Rahmouni, G. Schmerber and H. A. M. van den Berg, J. Magn. Magn. Mater. 198–199, 67 (1999).

    Article  Google Scholar 

  17. J. S. Tsay and C. S. Shern, J. Appl. Phys. 80, 3777 (1998).

    Article  ADS  Google Scholar 

  18. W. H. Chen, S. C. Wang, Y. W. Tseng, D. C. Tsai and J. S. Tsay, Surf. Sci. 605, 2045 (2011).

    Article  ADS  Google Scholar 

  19. C. Argile and G. E. Rhead, Surf. Sci. Rep. 10, 277 (1989).

    Article  ADS  Google Scholar 

  20. Y. J. Chen, H. Y. Ho, C. C. Tseng and C. S. Shern, Surf. Sci. 601, 4334 (2007).

    Article  ADS  Google Scholar 

  21. G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry, second ed. (VCH, Weinheim, 1985).

    Google Scholar 

  22. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, New York, 2003).

    Google Scholar 

  23. W. G. Moffatt, The Handbook of Binary Phase Diagram (Genium Press, New York, 1990).

    Google Scholar 

  24. C. W. Hsu, S. K. Chen, W. M. Liao, F. T. Yuan, W. C. Chang and J. L. Tsai, J. Alloy Comp. 449, 52 (2008).

    Article  Google Scholar 

  25. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).

    Article  ADS  Google Scholar 

  26. J. S. Kim, Y. M. Koo, B. J. Lee and S. R. Lee, J. Appl. Phys. 99, 053906 (2006).

    Article  ADS  Google Scholar 

  27. J. S. Tsay, C. S. Yang, Y. Liou and Y. D. Yao, J. Appl. Phys. 85, 4967 (1999).

    Article  ADS  Google Scholar 

  28. F. Huang, M. T. Kief, G. J. Mankey and R. F. Willis, Phys. Rev. B 49, 3962 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Shen Tsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, WY., Tsai, DC., Chen, WH. et al. Enhancement of the polar coercive force for annealed Co/Ir(111) ultrathin films. Journal of the Korean Physical Society 62, 1945–1949 (2013). https://doi.org/10.3938/jkps.62.1945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.1945

Keywords

Navigation