Skip to main content
Log in

Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of ochratoxin A

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate lactic acid bacteria from two varieties of grape bunch cultivated in Tunisia (cardinal and red-globe) in order to assess their ability to inhibit the growth of their most widespread contaminant, Aspergillus niger aggrégats and Aspergillus carbonarius. Antifungal activity of 18 isolates was investigated using overlay technique; selected isolates were than identified using 16s rDNA sequence analysis. Isolates with antifungal activities were screened out and studied for their probiotic properties using in vitro tests (tolerance to simulated gastric jus, bile salts, hydrophobicity properties).The most efficient strain was also investigated for its ability to reduce the concentration of ochratoxin A (OTA) on liquid medium. Determination of OTA content in media was released using HPLC analysis. Selected strains (RG7B) (C11C) and (RG8A) showing a good antifungal activities against Aspergillus niger aggrégats and Aspergillus carbonarius were identified as Pediococcus pentosaceus and Lactobacillus plantarum, respectively. Pediococcus pentosaceus (RG7B) showed promising potential probiotic characteristics and had a high ability for OTA removal after 48 h of incubation in both MRS and PBS media. The OTA removal percentage was significantly higher in MRS than in PBS media (84 and 25%, respectively). This study provides evidence for the control of black Aspergillus growth in grape and OTA detoxifying by the use of autochthones LAB strains having antifungal effect and probiotic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  • Argyri AA, Zoumpopoulou G, Karatzas KAG, Tsakalidou E, Nychas GJE, Panagou E, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153(3):243–259

    Article  CAS  PubMed  Google Scholar 

  • Battilani P, Pietri A, Bertuzzi T, Languasco L, Giorni P, Kozakiewicz Z (2003) Occurrence of ochratoxin A–producing fungi in grapes grown in Italy. J Food Prot, 4, 0 535-709, 633-636(4)

  • Battilani P, Giorni P, Bertuzzi T, Formenti S, Piertri A (2006) Black aspergilli and ochratoxin A in grapes in Italy. Int J Food Microbiol 111:S53–S60

    Article  CAS  PubMed  Google Scholar 

  • Belkacem-Hanfi N, Fhoula I, Semmar N, Guesmi A, Perraud-Gaime I, OuzariHadda I, Boudabous A, Roussos S (2014) Lactic acid bacteria against post-harvest moulds and ochratoxin A isolated from stored wheat. Biol Control 76:52–59

    Article  CAS  Google Scholar 

  • Bellí N, Ramos AJ, Sanchis V, Marin S (2004a) Incubation time and water activity effects on ochratoxin A production by Aspergillus section Nigri strains isolated from grapes. Lett Appl Microbiol 38:72–77

    Article  PubMed  CAS  Google Scholar 

  • Bellí N, Marín S, Duaigües A, Ramos AJ, Sanchis V (2004b) Ochratoxin A in wines, musts and grape juices from Spain. J Sci Food Agric 84(6):591–594

    Article  CAS  Google Scholar 

  • Burdaspalp A, Legarda M (1999) Ochratoxin A in wines and grape products originated from Spain and other european countries. Alimentaria 299:107–113

    Google Scholar 

  • Cabañes FJ, Accensi F, Bragulat MR, Abarca ML, Castellá G, Minguez S, Pons A (2002) What is the source of ochratoxin A in wine ? Int J Food Microbiol 79(3):213–215

    Article  PubMed  Google Scholar 

  • Chateau N, Deschamps AM, Hadj Sassi A (1994) Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett Appl Microbiol 18(1):42–44

    Article  Google Scholar 

  • Covarelli L, Tosi L, Beccari G (2015) Chapter 50 - Risks Related to the Presence of Fungal Species and Mycotoxins in Grapes, Wines and Other Derived Products in the Mediterranean Area. The mediterranean diet 563–575.

  • Creppy EE (1998) Human ochratoxicosis and nephropathy in Egypt. Hum ExpToxicol 17:124–129

    Article  Google Scholar 

  • Crowley S, Mahony J, van Sinderen D (2013) Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiology 58(4):291–299

    Article  CAS  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, vanSinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Science 45:309–318

    Article  CAS  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins. Food Control 21:370–380

    Article  CAS  Google Scholar 

  • De Pina CG, Hogg TA (1999) Microbial and chemical changes during the spontaneous ensilage of grape marc. J Appl Microbiol 86:777–784

    Article  Google Scholar 

  • Del Piano M, Morelli L, Strozzi GP, Allesina S, Barba M, Deidda F, Lorenzini P, Ballar´e M, Montino F, Orsello M, Sartori M, Garello E, Carmagnola S, Pagliarulo M, Capurso L (2006) Probiotics: from research to consumer. Dig Liver Dis 38:248–255

    Article  Google Scholar 

  • FAO/WHO (2001) Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina

  • Filali A, Ouammi L, Betbeder AM, Baudrimont I, Soulaymani R, Benayada A, Creppy EE (2001) Ochratoxin A in beverages from Morocco: a preliminary survey. Food Addit Contam 18(6):565–568

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G. H., Prakitchaiwattana, C., Beh, A.L., Heard, G. (2002). The yeast ecology of wine grapes. Biodiversity and Biotechnology of Wine Yeasts Research Signpost, 1–17

  • Francesca N, Settanni L, Sannino C, Aponte M, Moschetti G (2011) Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area. Ann Microbiol 61:79–84

    Article  CAS  Google Scholar 

  • Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmuller S (2008) Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol 46:1398–1407

    Article  CAS  PubMed  Google Scholar 

  • Gerez CL, Torino MI, Obregozo MD, de Valdez G (2010) A ready-to use antifungal starter culture improves the shelf life of packaged bread. J Food Prot 73:758–762

    Article  CAS  PubMed  Google Scholar 

  • Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J Dairy Sci 67:3045–3051

    Article  CAS  PubMed  Google Scholar 

  • Gómez C, Bragulat MR, Abarca ML, Mínguez S, Cabañes FJ (2006) Ochratoxin A-producing fungi from grapes intended for liqueur wine production. Food Microbiol 23(6):541–545

    Article  PubMed  CAS  Google Scholar 

  • Gorbach SL (2002) Probiotics in the third millennium. Dig Liver Dis 34(Suppl.2):52–57

    Google Scholar 

  • Guo Z, Wang J, Yan L, Chen W, Liu X-m, Zhang H-p (2009) In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. LWT Food Sci Technol 42:1640–1646

    Article  CAS  Google Scholar 

  • Huang Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionic bacteria. Int J Food Microbiol 91(3):253–260

    Article  PubMed  Google Scholar 

  • Huang Y, Lu Y, Zhai ZH, Yang C, Hongtao T, Zheng L, Feng J, Liu H, Hao Y (2009) Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan pickle, a traditionally fermented vegetable product from China. Food Control 20(11):1030–1035

    Article  CAS  Google Scholar 

  • IARC: International Agency for Research on Cancer (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Monogr Eval Carcinog Risks Hum 56:489–521

    Google Scholar 

  • Jonganurakkun B, Wang Q, Xu SH, Tada Y, Minamida K, Yasokawa D, Sugi M, Hara H, Asano K (2008) Pediococcus pentosaceus NB-17 for probiotic use. J Biosci Bioeng 106(1):69–73

  • Krogh P (1992) Role of ochratoxin in disease causation. Food Chem Toxicol 3:213–224

    Article  Google Scholar 

  • del Prete V, Rodriguez H, Carrascosa AV, de las Rivas B, Garcia-Moruno E, Munoz R (2007) In vitro removal of ochratoxin A by wine lactic acid bacteria. J Food Prot 70:2155–2160

    Article  PubMed  Google Scholar 

  • Lasram S, Oueslati S, Mliki A, Ghorbel A, Silar P, Chebil S (2012) Ochratoxin A and ochratoxigenic black Aspergillus species in Tunisian grapes cultivated in different geographic areas. Food Control 25:75–80

    Article  CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus plantarum Strain 21B. Appl Environ Microbiol 66:4084–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal-Sánchez MV, Ruiz-Barba JL, Sánchez AH, Rejano L, Jiménez-Díaz R, Garrido A (2003) Fermentation profile and optimization of green olive fermentation using lactobacillus plantarum LPCO10 as a starter culture. Food Microbiol 20:421–430

    Article  CAS  Google Scholar 

  • Leong S-L, Hocking AD, Pitt JI (2004) Occurrence of fruit rot fungi (Aspergillus section Nigri) on some drying varieties of irrigated grapes. Aust J Grape Wine Res 10(1):83–88

    Article  Google Scholar 

  • Mainville I, Arcand Y, Farnworth ER (2005) A dynamic model that simulates the human upper gastro-intestinal tract for the study of probiotics. Int J Food Microbiol 99:287–296

    Article  CAS  PubMed  Google Scholar 

  • Maragkoudakis PA, Nardi T, Bovo B, D'Andrea M, Howell KS, Giacomini A, Corich V (2013) Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa. Int J Food Microbiol 162:143–151

    Article  CAS  PubMed  Google Scholar 

  • Niderkorn V, Morgavi DP, Aboab B, Lemaire M, Boudra H (2009) Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. J Appl Microbiol 106:977–985

    Article  CAS  PubMed  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  CAS  PubMed  Google Scholar 

  • Peyer LC, Axel C, Lynch KM, Zannini E, Fritz J, Arendt EK (2016) Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control 69:227–236

    Article  CAS  Google Scholar 

  • Piotrowska M, Zakowska Z (2005) The elimination of ochratoxin A by lactic acid bacteria strains. Pol J Microbiol 54:279–286

    CAS  PubMed  Google Scholar 

  • Reis JA, Paula AT, Casarotti SN, Penna ALB (2012) Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev 4(2):124–140

    Article  CAS  Google Scholar 

  • Renouf V, Lonvaud-Funel A (2007) Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of grape berries. Microbiol Res 162(2):154–167

    Article  CAS  PubMed  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11(3):316–327

    Article  Google Scholar 

  • Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59:3255–3265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Rossland E, Borge GIA, Langsrud T, Sorhaug T (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int J Food Microbiol 89:205–212

    Article  PubMed  Google Scholar 

  • Rouse S, Canchaya C, van Sinderen D (2008) Lactobacillus hordeisp nov a bacteriocinogenic strain isolated from malted barley. Int J Syst Evol Microbiol 58:2013–2017

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux S, Filofteia DC, Radoï-Matei F, Alexandre H, Guilloux-Bénatier M (2014) Non-botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiol 38:104–121

    Article  CAS  PubMed  Google Scholar 

  • Russo, P., Arena, M, Fiocco, D., Capozzi, V, Drider, D., Spano, G. (2016). Lactobacillus plantarum with broad antifungal activity: a promising approach toi ncrease safety and shelf-life of cereal-based products International Journal of Food Microbiology in press

  • Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Villarreal JV (2010) Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control 21(2):107–111

    Article  CAS  Google Scholar 

  • Schnurer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16:70–78

    Article  CAS  Google Scholar 

  • Schwenninger SM, von Ah U, Niederer B, Teuber M, Meile A (2005) Detection of antifungal properties in Lactobacillus paracasei subsp. paracasei SM20, SM29, and SM63 and molecular typing of the strains. J Food Prot 68(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Serra R, Braga A, Venâncio A (2005) Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Res Microbiol 156:515–521

    Article  CAS  PubMed  Google Scholar 

  • Sharpe, M. E. (1979). Identification of the lactic acid bacteria. In F. A. Skinner & D. W.Lovelock (Eds.), identification methods for microbiologists (2nd ed.). London:Academic Press

  • Silva ML, Malcata FX (2000) Effect of time and temperature of fermentation on the microflora of grape marc. Bioprocess Biosyst Eng 23:17–24

    Article  CAS  Google Scholar 

  • Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(L-Phe–L-Pro) and Cyclo(L-Phe–trans-4-OH-L-Pro) and 3-Phenyllactic Acid. Appl Environ Microbiol 68:4322–4327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa N, PaL J, Tamang JP (2004) Microbial diversity in ngari, hentak and tungtap, fermented fish products of north-east India. World J Microbiol Biotechnol 20:599–607

    Article  CAS  Google Scholar 

  • Tjamos SE, Antoniou PP, Tjamos E (2006) Aspergillus spp., distribution, population composition and ochratoxin A production in wine producing vineyards in Greece. Int J Food Microbiol 111(1):S61–S66

    Article  CAS  PubMed  Google Scholar 

  • Usman HA (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by lactobacillus gasseristrains. J Dairy Sci 82(2):243e248

    Article  Google Scholar 

  • Walker DK, Gilliland SE (1993) Relationships among bile tolerance, bile salts deconjugation and assimilation by cholesterol by lactobacillus acidophilus. J Dairy Sci 76:956–961 webmanagercenter.com 18 Août 2015: Tunisie , Economie, raisins , Agriculture

    Article  CAS  PubMed  Google Scholar 

  • Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Bent R, Kingston RE et al (eds) Current protocols in molecular biology. J. Wiley & Sons, New York, N.Y, pp 2.10–2.12

    Google Scholar 

  • Yang EJ, Chang HC (2010) Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139(1–2):56–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouzaiene Taroub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taroub, B., Salma, L., Manel, Z. et al. Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of ochratoxin A. Ann Microbiol 69, 17–27 (2019). https://doi.org/10.1007/s13213-018-1359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1359-6

Keywords

Navigation