Skip to main content
Log in

Amide compounds as electrolyte additives for improving the performance of high-voltage lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The influences that two amide-containing electrolyte additives, N,N-dimethyltrifluoroacetamide (DMTFA) and N,N-dimethylacrylamide (DMAA), have on the cycling stability of LiNi0.5Co0.2Mn0.3O2 (NCM523)/graphite cells were evaluated over a voltage range of 3–4.6 V. The results indicate that the capacity retention and Coulombic efficiency of the cells after cycling were improved by the addition of 3 vol.% DMTFA or DMAA to LiPF6-based electrolytes. The possible mechanisms behind the improvements were investigated using both theoretical calculations and experimental characterization. The results show that both DMTFA and DMAA exhibit better redox activity than do solvent molecules in the electrolytes, wherein DMTFA preferentially forms a LiF-rich uniform film and DMAA forms a polymer film on the surface of the electrodes. Besides this, the presence of the additives partially suppresses the decomposition of the electrolytes. The electrochemically stable films formed by the additives effectively protect the structure of the electrodes and improve battery performance at high voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  4. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  PubMed  Google Scholar 

  5. Cho Y, Lee S, Lee Y, Hong T, Cho J (2011) Spinel-layered core-shell cathode materials for Li-ion batteries. Adv Energy Mater 1(5):821–828

    Article  CAS  Google Scholar 

  6. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30(7):642–643

    Article  Google Scholar 

  7. Shu J, Ma R, Shao L, Shui M, Wu K, Lao M, Wang D, Long N, Ren Y (2014) In-situ X-ray diffraction study on the structural evolutions of LiNi0.5Co0.3Mn0.2O2 in different working potential windows. J Power Sources 245:7–18

    Article  CAS  Google Scholar 

  8. Campion CL, Li W, Euler WB, Lucht BL, Ravdel B, DiCarlo JF, Gitzendanner R, Abraham KM (2004) Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes. Electrochem Solid-State Lett 7(7):A194–A197

    Article  CAS  Google Scholar 

  9. Campion CL, Li W, Lucht BL (2005) Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J Electrochem Soc 152(12):A2327–A2334

    Article  CAS  Google Scholar 

  10. Li W, Campion C, Lucht BL, Ravdel B, DiCarlo J, Abraham KM (2005) Additives for stabilizing LiPF6-based electrolytes against thermal decomposition. J Electrochem Soc 152(7):A1361–A1365

    Article  CAS  Google Scholar 

  11. You L, Duan K, Zhang G, Song W, Yang T, Song X, Wang S, Liu J (2019) N, N-Dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature. The Journal of Physical Chemistry C 123(10):5942–5950

    Article  CAS  Google Scholar 

  12. Xiao A, Li W, Lucht BL (2006) Thermal reactions of mesocarbon microbead (MCMB) particles in LiPF6-based electrolyte. J Power Sources 162(2):1282–1288

    Article  CAS  Google Scholar 

  13. Xu M, Hao L, Liu Y, Li W, Xing L, Li B (2011) Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries. The Journal of Physical Chemistry C 115(13):6085–6094

    Article  CAS  Google Scholar 

  14. Bae S-Y, Shin W-K, Kim D-W (2014) protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta 125:497–502

    Article  CAS  Google Scholar 

  15. Tu W, Xing L, Xia P, Xu M, Liao Y, Li W (2016) Dimethylacetamide as a film-forming additive for improving the cyclic stability of high voltage lithium-rich cathode at room and elevated temperature. Electrochim Acta 204:192–198

    Article  CAS  Google Scholar 

  16. Möller KC, Hodal T, Appel WK, Winter M, Besenhard JO (2001) Fluorinated organic solvents in electrolytes for lithium ion cells. J Power Sources 97:595–597

    Article  Google Scholar 

  17. Bryantsev VS, Giordani V, Walker W, Uddin J, Lee I, van Duin ACT, Chase GV, Addison D (2013) Investigation of fluorinated amides for solid-electrolyte interphase stabilization in Li-O2 batteries using amide-based electrolytes. The Journal of Physical Chemistry C 117(23):11977–11988

    Article  CAS  Google Scholar 

  18. Yoo E, Zhou H (2017) Enhanced cycle stability of rechargeable Li-O2 batteries by the synergy effect of a LiF protective layer on the Li and DMTFA additive. ACS Appl Mater Interfaces 9(25):21307–21313

    Article  CAS  PubMed  Google Scholar 

  19. Xu Z, Yang J, Qian J, Zhang T, Nuli Y, Chen R, Wang J (2019) Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Materials 20:388–394

    Article  Google Scholar 

  20. Zuo W (2020) Effect of N-N dimethyltrifluoroacetamide additive on low temperature performance of graphite anode. Int J Electrochem Sci 15:382–393

    Article  CAS  Google Scholar 

  21. Dobrowski SA, Davies GR, McLntyre JE, Ward IM (1991) Ionic conduction in poly(N, N-dimethylacrylamide) gels complexing lithium salts. Polymer 32(16):2887–2891

    Article  CAS  Google Scholar 

  22. Wieczorek W, Such K, Florjanczyk Z, Stevens JR (1995) Polyacrylamide based composite polymeric electrolytes. Electrochim Acta 40(13–14):2417–2420

    Article  CAS  Google Scholar 

  23. Wieczorek W, Zalewska A, Raducha D, Florjańczyk Z, Stevens JR, Ferry A, Jacobsson P (1996) Polyether, poly(N, N-dimethylacrylamide), and LiClO4 composite polymeric electrolytes. Macromolecules 29(1):143–155

    Article  CAS  Google Scholar 

  24. Zhu G, Yang S, Wang Y, Qu Q, Zheng H (2019) Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries. RSC Adv 9(1):435–443

    Article  Google Scholar 

  25. Mai S, Xu M, Liao X, Hu J, Lin H, Xing L, Liao Y, Li X, Li W (2014) Tris(trimethylsilyl)phosphite as electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Electrochim Acta 147:565–571

    Article  CAS  Google Scholar 

  26. Liao B, Li H, Xu M, Xing L, Liao Y, Ren X, Fan W, Yu L, Xu K, Li W (2018) Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv Energy Mater 8(22):1800802

    Article  Google Scholar 

  27. Deng B, Wang H, Ge W, Li X, Yan X, Chen T, Qu M, Peng G (2017) Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive. Electrochim Acta 236:61–71

    Article  CAS  Google Scholar 

  28. Kang KS, Choi S, Song JH, Woo S-G, Jo YN, Choi J, Yim T, Yu J-S, Kim Y-J (2014) Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature. J Power Sources 253:48–54

    Article  CAS  Google Scholar 

  29. Wan S, Chen S (2020) A dithiol-based new electrolyte additive for improving electrochemical performance of NCM811 lithium ion batteries. Ionics 26:6023–6033

    Article  CAS  Google Scholar 

  30. Song B, Liu Z, Lai MO, Lu L (2012) Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys Chem Chem Phys 14(37):12875–12883

    Article  CAS  PubMed  Google Scholar 

  31. Xiang X, Li W (2014) Self-directed chemical synthesis of lithium-rich layered oxide Li[Li0.2Ni0.2Mn0.6]O2 with tightly interconnected particles as cathode of lithium ion batteries with improved rate capability. Electrochim Acta 127:259–265

    Article  CAS  Google Scholar 

  32. Zhao X, Zhuang Q-C, Wu C, Wu K, Xu J-M, Zhang M-Y, Sun X-L (2015) Impedance studies on the capacity fading mechanism of Li(Ni0.5Co0.2Mn0.3)O2 cathode with high-voltage and high-temperature. Journal of The Electrochemical Society 162(14):A2770–A2779

    Article  CAS  Google Scholar 

  33. Li T, Yuan X-Z, Zhang L, Song D, Shi K, Bock C (2019) Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries. Electrochemical Energy Reviews 3(1):43–80

    Article  Google Scholar 

  34. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    Article  CAS  Google Scholar 

  35. Reddy MV, Prithvi G, Loh KP, Chowdari BV (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6(1):680–690

    Article  CAS  PubMed  Google Scholar 

  36. Chang L, Wang K, Huang L-a, He Z, Zhu S, Chen M, Shao H, Wang J (2017) Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. Journal of Materials Chemistry A 5(39):20892–20902

    Article  CAS  Google Scholar 

  37. Ma Y (2018) Graphene oxide modified LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium ion batteries and its electrochemical performances. Int J Electrochem Sci 13:10440–10453

    Article  CAS  Google Scholar 

  38. Erickson EM, Schipper F, Penki TR, Shin J-Y, Erk C, Chesneau F-F, Markovsky B, Aurbach D (2017) Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164(1):A6341–A6348

    Article  CAS  Google Scholar 

  39. Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Advanced Energy Materials 4(1):1300787

    Article  Google Scholar 

  40. Yue P, Wang Z, Li X, Xiong X, Wang J, Wu X, Guo H (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118

    Article  CAS  Google Scholar 

  41. Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H, Li L (2014) Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process. Ceramics International 40(9):14933–14938

    Article  CAS  Google Scholar 

  42. Cai Y, Xu T, Solms N, Zhang H, Thomsen K (2020) Multifunctional imidazolium-based ionic liquid as additive for silicon/carbon lithium ion batteries. Electrochimica Acta 340:135990

    Article  CAS  Google Scholar 

  43. Moreno-Castilla C, López-Ramón MV, Carrasco-Marı́n F (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38(14):1995–2001

    Article  CAS  Google Scholar 

  44. Kang SH, Abraham DP, Xiao A, Lucht BL (2008) Investigating the solid electrolyte interphase using binder-free graphite electrodes. J Power Sources 175(1):526–532

    Article  CAS  Google Scholar 

  45. Zhao L, Watanabe I, Doi T, Okada S, Yamaki J-i (2006) TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. Journal of Power Sources 161(2):1275–1280

    Article  CAS  Google Scholar 

  46. Li W, Xiao A, Lucht BL, Smart MC, Ratnakumar BV (2008) Surface analysis of electrodes from cells containing electrolytes with stabilizing additives exposed to high temperature. J Electrochem Soc 155(9):A648–A657

    Article  CAS  Google Scholar 

  47. Morigaki K-i, Ohta A (1998) Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources 76(2):159–166

    Article  CAS  Google Scholar 

  48. Dedryvère R, Laruelle S, Grugeon S, Gireaud L, Tarascon JM, Gonbeau D (2005) XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. J Electrochem Soc 152(4):A689–A696

    Article  Google Scholar 

  49. Pires J, Castets A, Timperman L, Santos-Peña J, Dumont E, Levasseur S, Tessier C, Dedryvère R, Anouti M (2015) Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J Power Sources 296:413–425

    Article  CAS  Google Scholar 

  50. Liao L, Cheng X, Ma Y, Zuo P, Fang W, Yin G, Gao Y (2013) Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim Acta 87:466–472

    Article  CAS  Google Scholar 

  51. Wang S, Chen S, Gao W, Liu L, Zhang S (2019) A new additive 3-Isocyanatopropyltriethoxysilane to improve electrochemical performance of Li/NCM622 half-cell at high voltage. J Power Sources 423:90–97

    Article  CAS  Google Scholar 

  52. Li W, Lucht BL (2007) Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries. J Power Sources 168(1):258–264

    Article  CAS  Google Scholar 

  53. Wang L, Zuo P, Yin G, Ma Y, Cheng X, Du C, Gao Y (2015) Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn0.9Fe0.1PO4 cathode modified by polyacene coating. Journal of Materials Chemistry A 3(4):1569–1579

    Article  CAS  Google Scholar 

  54. Wang X, Zheng X, Liao Y, Huang Q, Xing L, Xu M, Li W (2017) Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive. J Power Sources 338:108–116

    Article  CAS  Google Scholar 

  55. Ouatani LE, Dedryvère R, Siret C, Biensan P, Gonbeau D (2009) Effect of vinylene carbonate additive in Li-ion batteries: comparison of LiCoO2/C, LiFePO4/C, and LiCoO2/Li4Ti5O12 systems. J Electrochem Soc 156(6):A468–A477

    Article  Google Scholar 

  56. Dedryvère R, Leroy S, Martinez H, Blanchard F, Lemordant D, Gonbeau D (2006) XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J Phys Chem B 110(26):12986–12992

    Article  PubMed  Google Scholar 

  57. Deng B, Li J, Shang H, Liu W, Wan Q, Chen M, Qu M, Peng G (2020) Improving cyclic stability of LiNi0.6Co0.2Mn0.2O2-SiOx/graphite full cell using tris(trimethylsilyl)phosphite and fluoroethylene carbonate as combinative electrolyte additive. Ionics 26:2247–2257

    Article  CAS  Google Scholar 

  58. Han J-G, Jeong M-Y, Kim K, Park C, Sung CH, Bak DW, Kim KH, Jeong K-M, Choi N-S (2020) An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. Journal of Power Sources 446:227366

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (No. 21673206).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mingzhu Sun, Shilei Fan, Yingchun Liu, and Qi Wang. The first draft of the manuscript was written by Mingzhu Sun and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

Ethics approval

Authors who need help understanding our data sharing policies, help finding a suitable data repository, or help organizing and sharing research data can access our Author Support portal for additional guidance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1010 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Fan, S., Liu, Y. et al. Amide compounds as electrolyte additives for improving the performance of high-voltage lithium-ion batteries. Ionics 28, 1753–1766 (2022). https://doi.org/10.1007/s11581-021-04118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04118-6

Keywords

Navigation