Skip to main content
Log in

In Situ Synthesized Hydroxyapatite—Cellulose Nanofibrils as Biosorbents for Heavy Metal Ions Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The synthesis of hydroxyapatite (HAp) in the presence of cellulose nanofibrils (CNF) or TEMPO-oxidized CNF (TCNF) was performed in situ by wet chemical precipitation process, using chemical precursors, to hybrid a low-cost biosorbents for removal of Co2+ as a model heavy metal ion. The removal is investigated by batch adsorption method depending on the pH value, the dosage of adsorbent, initial Co2+ concentration and the contact time of adsorption. The removal of Co2+ reached the maximum (87%) at pH 6 by using a dosage of 0.5 g L−1. The TCNFs is shown to increase the nucleation and growth of the HAp synthesized, providing higher surface area (138 m2 g−1) with lower pore diameter (11.89 nm), compared to the CNFs based hybrid (135 m2 g−1, 14.42 nm) or pure HAp (118 m2 g−1, 13.32 nm), however, both resulting to a higher adsorption capacity (25 mg g−1) of Co2+ compared to HAp or TCNF (20–22 mg g−1). The adsorption is follows primarily by pseudo-first and Elovic order kinetic models which is due to the physisorption of Co2+ and surface ionic interactions with available negative phosphate (from HAp) and/or carboxylic (from TCNF) groups, fitting well with the Freundlich adsorption isotherm, and secondly due to the ion-exchange mechanism of Co2+ with Ca2+ from HAp. Both hybrid adsorbents show good adsorption (≥40%) capacity even after third reusing cycle, and high temperature stability (weight loss of 14%) up to 1000 °C, however, the CNF-HAp hybrid represent a high-value alternative to relatively costly TCNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Int J Phys Sci 2(5):112–118

    Google Scholar 

  2. Abdel Salam OE, Reiad NA, ElShafei MM (2011) J Adv Res 2(4):297–303

    Article  Google Scholar 

  3. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  4. Lim SR, Schoenung JM (2010) J Hazard Mater 177(1–3):251–259

    Article  CAS  Google Scholar 

  5. Robinson BH (2009) Sci Total Environ 408(22):183–191

    Article  CAS  Google Scholar 

  6. Eladlani N, Dahmane EM, Ouahrouch A, Rhazi M, Taourirte M (2017) J Polym Environ 1–6

  7. Järup L (2003) Br Med Bull 68(1):167–182

    Article  Google Scholar 

  8. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Environ Pollut 152(3):686–692

    Article  CAS  Google Scholar 

  9. Denkhaus E, Salnikow K (2002) Crit Rev Oncol Hematol 42(1):35–56

    Article  CAS  Google Scholar 

  10. Griswold W, Martin S (2009) Environ Sci Technol 15:1–6

    Google Scholar 

  11. Goldhaber SB (2003) Regul Toxicol Pharmacol 38(2):232–242

    Article  CAS  Google Scholar 

  12. Wang X, Sato T, Xing B, Tao S (2005) Sci Total Environ 350(1–3):28–37

    Article  CAS  Google Scholar 

  13. Lindsay D, Kerr W (2011) Nat Chem 3:494

    Article  CAS  Google Scholar 

  14. Pohl HR, Wheeler JS, Murray HE (2013) Met Ions Life Sci 13:1–28

    Article  Google Scholar 

  15. Gustaf Elinder C (1984) Environ Toxicol Chem 7(3):251–256

    Article  Google Scholar 

  16. Barałkiewicz D, Siepak J (1999) Pol J Environ Stud 8(4):201–208

    Google Scholar 

  17. Smičiklas I, Dimović S, Plećaš I, Mitrić M Water Res 40(2):2267–2274

  18. Gogoi D, Shanmugamani AG, Rao SVS, Kumar T, Shreekumar B, Sinha PK (2013) J Radioanal Nucl Chem 295(2):1531–1535

    Article  CAS  Google Scholar 

  19. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Sci Rep 6:23361

    Article  CAS  Google Scholar 

  20. Abbas M, Kaddour S, Trari M (2014) Ind Eng Chem Res 20(3):745–751

    Article  CAS  Google Scholar 

  21. Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang XJ, Liu J (2014) J Hazard Mater 270:1–10

    Article  CAS  Google Scholar 

  22. Bhatnagar A, Minocha AK, Sillanpää M (2010) Biochem Eng J 48(2):181–186

    Article  CAS  Google Scholar 

  23. Erdem E, Karapinar N, Donat R (2004) J Colloid Interface Sci 280(2):309–314

    Article  CAS  Google Scholar 

  24. Corami A, Mignardi S, Ferrini V (2008) J Colloid Interface Sci 317(2):402–408

    Article  CAS  Google Scholar 

  25. Mobasherpour I, Salahi E, Pazouki M (2012) Arab J Chem 5(4):439–446

    Article  CAS  Google Scholar 

  26. Admassu W, Breese T (1999) J Hazard Mater 69(2):187–196

    Article  CAS  Google Scholar 

  27. Stötzel C, Müller FA, Reinert F, Niederdraenk F, Barralet JE, Gbureck U Colloids Surf B 74(1):91–95

  28. Mousa SM, Ammar NS, Ibrahim HA (2016) J Saudi Chem Soc 20(3):357–365

    Article  CAS  Google Scholar 

  29. Treccani L, Yvonne Klein T, Meder F, Pardun K, Rezwan K (2013) Acta Biomater 9(7):7115–7150

    Article  CAS  Google Scholar 

  30. Zhang Y, Liu Y, Ji X, Banks CE, Zhang W (2011) Chem Commun 47(14):4126–4128

    Article  CAS  Google Scholar 

  31. Verwilghen C, Rio S, Nzihou A, Gauthier D, Flamant G, Sharrock PJ (2007) J Mater Sci 42(15):6062–6066

    Article  CAS  Google Scholar 

  32. Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L (2010) Environ Pollut 158(2):514–519

    Article  CAS  Google Scholar 

  33. Padmanabhan SK, Balakrishnan A, Chu MC, Lee YC, Kim TN, Cho SJ (2009) Particuology 7(6):466–470

    Article  CAS  Google Scholar 

  34. Zhao XY, Zhu YJ, Lu BQ, Chen F, Qi C, Zhao J, Wu J (2013) Cryst Eng Comm 15(39):7926–7935

    Article  CAS  Google Scholar 

  35. Bharath G, Kumar KJ, Karthick K, Mangalaraj D, Viswanathan C, Ponpandian N (2014) RSC Adv 4(70):37446–37457

    Article  CAS  Google Scholar 

  36. Li Z, Wen T, Su Y, Wei X, He C, Wang D (2014) Cryst Eng Comm 16(20):4202–4209

    Article  CAS  Google Scholar 

  37. Jiang S, Yao Q, Zhou G, Fu S (2012) J Phys Chem C 116(7):4484–4492

    Article  CAS  Google Scholar 

  38. Bazargan-Lari R, Zafarani HR, Bahrololoom ME, Nemati A (2014) J Taiwan Inst Chem Eng 45(4):1642–1648

    Article  CAS  Google Scholar 

  39. Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) J Taiwan Inst Chem Eng 45(2):518–526

    Article  CAS  Google Scholar 

  40. Lei Y, Guan J, Chen W, Ke Q, Zhang C (2015) RSC Adv 5(32):25462–25470

    Article  CAS  Google Scholar 

  41. Gopalakannan V, Viswanathan N (2015)) Ind Eng Chem Res 54(50):12561–12569

    Article  CAS  Google Scholar 

  42. Googerdchian F, Moheb A, Emadi R (2012) Chem Eng J 200–202:471–479

  43. Oladipo AA, Gazi M (2015) Toxicol Environ Chem 98(2):1–15

    Google Scholar 

  44. Hokkanen S, Bhatnagar A, Repo E, Lou S, Sillanpää M (2016) Chem Eng J 283:445–452

    Article  CAS  Google Scholar 

  45. Choi S, Jeong YFibers Polym 9(3):267–270

  46. Jamiu ZA, Saleh TA, Ali SA (2017) J Hazard Mater 327:44–54

    Article  CAS  Google Scholar 

  47. Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) J Hazard Mater 66(2):925–930

    Article  Google Scholar 

  48. Krishnan KA, Anirudhan TS (2008) Chem Eng J 137(2):257–264

    Article  CAS  Google Scholar 

  49. Rengaraj S, Moon SH (2002) Water Res 36(7):1783–1793

    Article  CAS  Google Scholar 

  50. Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) J Hazard Mater 166(2):1043–1049

    Article  CAS  Google Scholar 

  51. Wang Q, Li J, Chen C, Ren X, Hu J, Wang X (2011) Chem Eng J 174(1):126–133

    Article  CAS  Google Scholar 

  52. Karkeh-abadi F, Saber-Samandari S, Saber-Samandari S (2016) J Hazard Mater 312:224–233

    Article  CAS  Google Scholar 

  53. Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Soft Matter 9(6):2047–2055

    Article  CAS  Google Scholar 

  54. Kamel S, Hassan EM, El-Sakhawy M (2006) J Appl Polym Sci 100(1):329–334

    Article  CAS  Google Scholar 

  55. Kalia S, Boufi S, Celli A, Kango s (2014) Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  56. Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) RSC Adv 7(9):5232–5241

    Article  CAS  Google Scholar 

  57. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  58. Narwade VN, Khairnar RS (2017) Bull Pol Acad Sci Tech Sci 65(2):131–137

    CAS  Google Scholar 

  59. Brundavanam RK, Poinern GE, Fawcett D (2013) Amer J Mater Sci 3(4):84–90

    Google Scholar 

  60. Narwade VN, Kokol V, Khairnar RS (2017) J Mater Sci Surf Eng 5(2):544–548

    CAS  Google Scholar 

  61. Mahto TK, Pandey SC, Chandra S, Kumar A (2015) RSC Adv 5(117):96313–96322

    Article  CAS  Google Scholar 

  62. Tank KP, Sharma P, Kanchan DK, Joshi MJ, Cryst Res Technol 46(12):1309–1316

  63. Mene RU, Mahabole MP, Khairnar RS (2011) Radiat Phys Chem 80(6):682–687

    Article  CAS  Google Scholar 

  64. Jaušovec D, Vogrinčič R, Kokol V (2015) Carbohydr Polym 116:74–85

    Article  Google Scholar 

  65. French AD, Cintrón MS (2013) Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  66. Fang W, Zhang H, Yin J, Yang B, Zhang Y, Li J, Yao F (2016) Cryst Growth Des 16(3):1247–1255

    Article  CAS  Google Scholar 

  67. Sofla MR, Brown RJ, Tsuzuki T, Rainey TJ (2016) Adv Nat Sci 7(3):035004–035009

    Google Scholar 

  68. Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) J Hazard Mater 161(1):231–240

    Article  CAS  Google Scholar 

  69. Lalhruaitluanga H, Jayaram K, Prasad MN, Kumar KK (2010) J Hazard Mater 175(1):311–318

    Article  CAS  Google Scholar 

  70. Chien SH, Clayton WR(1980) Soil Sci Soc Am J 44(2):265–268

    Article  CAS  Google Scholar 

  71. Macías-García A, Corzo MG, Domínguez MA, Franco MA, Naharro JM (2017) J Hazard Mater 328:46–55

    Article  Google Scholar 

  72. Foo KY, Hameed BH (2010) Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  73. Gedam AH, Dongre RS (2015) RSC Adv 5(67):54188–54201

    Article  CAS  Google Scholar 

  74. Cawthray JF, Creagh AL, Haynes CA, Orvig C (2015) Inorg Chem 54(4):1440–1445

    Article  CAS  Google Scholar 

  75. Narwade VN, Mahabole MP, Bogle KA, Khairnar RS (2014) Inter J Eng Sci Inno Tech3(3):324–329

    Google Scholar 

  76. Reichert J, Binner JG (1996) J Mater Sci 31(5):1231–1241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Erasmus Mundus Project Euphrates (2013-2540/001-001-EMA2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajendra S. Khairnar or Vanja Kokol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narwade, V.N., Khairnar, R.S. & Kokol, V. In Situ Synthesized Hydroxyapatite—Cellulose Nanofibrils as Biosorbents for Heavy Metal Ions Removal. J Polym Environ 26, 2130–2141 (2018). https://doi.org/10.1007/s10924-017-1101-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1101-7

Keywords

Navigation