Skip to main content
Log in

Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, 99mTc) complexes: synthesis, characterization, and cell studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Auger-emitting radionuclides such as 99mTc have been the focus of recent studies aiming at finding more selective therapeutic approaches. To explore the potential usefulness of 99mTc as an Auger emitter, we have synthesized and biologically evaluated novel multifunctional structures comprising (1) a pyrazolyl-diamine framework bearing a set of donor atoms to stabilize the [M(CO)3]+ (M is Re, 99mTc) core; (2) a DNA intercalating moiety of the acridine orange type to ensure close proximity of the radionuclide to DNA and to follow the internalization and subcellular trafficking of the compounds by confocal fluorescence microscopy; and (3) a bombesin (BBN) analogue of the type X-BBN[7-14] (where X is SGS, GGG) to provide specificity towards cells expressing the gastrin releasing peptide receptor (GRPr). Of the evaluated 99mTc complexes, Tc 3 containing the GGG-BBN[7-14] peptide showed the highest cellular internalization in GRPr-positive PC3 human prostate tumor cells, presenting a remarkably high nuclear uptake in the same cell line. Live-cell confocal imaging microscopy studies with the congener Re complex, Re 3, showed a considerable accumulation of fluorescence in the nucleus, with kinetics of uptake similar to that exhibited by Tc 3. Together, these data show that the acridine orange intercalator and the metal fragment are colocalized in the nucleus, which indicates that they remain connected despite the lysosomal degradation of Tc 3/Re 3. These compounds are the first examples of 99mTc bioconjugates that combine specific cell targeting with nuclear internalization, a crucial issue to explore use of 99mTc in Auger therapy.

Graphical abstract

Pyrazolyl-diamine Re/99mTc tricarbonyl complexes bearing an acridine orange intercalator and bombesin peptides internalize and target the nucleus of gastrin releasing peptide receptor positive PC3 human prostate tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam MJ, Wilbur DS (2005) Chem Soc Rev 34:153–163

    Article  PubMed  CAS  Google Scholar 

  2. Kassis AI, Walicka MA, Adelstein SJ (2000) Acta Oncol 39:721–726

    Article  PubMed  CAS  Google Scholar 

  3. Stepanek J, Ilvonen SA, Lampinen JS, Savolainen SE, Välimäki PJ, Kuronun AA (2000) Acta Oncol 39:667–671

    Article  PubMed  CAS  Google Scholar 

  4. Chen P, Wang J, Hope K, Jin L, Dick J, Cameron R, Brandwein J, Minden M, Reilly RM (2006) J Nucl Med 47:827–836

    PubMed  CAS  Google Scholar 

  5. Edel S, Terrissol M, Peudon A, Kümmerle E, Pomplun E (2006) Radiat Prot Dosim 122:136–140

    Article  CAS  Google Scholar 

  6. Ickenstein LM, Edwards K, Sjöberg S, Carlsson J, Gedda L (2006) Nucl Med Biol 33:773–783

    Article  PubMed  CAS  Google Scholar 

  7. Michel RB, Rosario AV, Andrews PM, Foldenberg DM, Mattes MJ (2005) Clin Cancer Res 11:777–786

    PubMed  CAS  Google Scholar 

  8. Bailey KE, Constantini DL, Cai Z, Scolland DA, Chen Z, Reilly RM, Vallis KA (2007) J Nucl Med 48:1562–1570

    Article  PubMed  CAS  Google Scholar 

  9. Häfliger P, Agorastos N, Spingler B, Georgiev O, Viola G, Alberto R (2005) ChemBioChem 6:414–421

    Article  PubMed  Google Scholar 

  10. Agorastos N, Borsig L, Renard A, Antoni P, Viola G, Spingler B, Kurz P, Alberto R (2007) Chem Eur J 13:3842–3852

    Article  PubMed  CAS  Google Scholar 

  11. Zelenka K, Borsig L, Alberto R (2011) Org Biomol Chem 9:1071–1078

    Article  PubMed  CAS  Google Scholar 

  12. Schipper ML, Riese CG, Seitz S, Weber A, Behe M, Schurrat T, Schramm N, Keil B, Alfke H, Behr TM (2007) Eur J Nucl Med Mol Imaging 34:638–650

    Article  PubMed  CAS  Google Scholar 

  13. Chan CR, Cai ZL, Su RF, Reilly RM (2010) Nucl Med Biol 37:105–115

    Article  PubMed  CAS  Google Scholar 

  14. Vitor RF, Correia I, Videira M, Marques F, Paulo A, Pessoa JC, Viola G, Martins GG, Santos I (2008) ChemBioChem 9:131–142

    Article  PubMed  CAS  Google Scholar 

  15. Vitor RF, Esteves T, Marques F, Raposinho P, Paulo A, Rodrigues S, Rueff J, Casimiro S, Costa L, Santos I (2009) Cancer Biother Radiopharm 24:551–563

    Article  PubMed  CAS  Google Scholar 

  16. Esteves T, Xavier C, Gama S, Mendes F, Raposinho PD, Marques F, Paulo A, Pessoa JC, Rino J, Viola G, Santos I (2010) Org Biomol Chem 8:4104–4116

    Article  PubMed  CAS  Google Scholar 

  17. Smith CJ, Volkert WA, Hoffman TJ (2005) Nucl Med Biol 33:733–740

    Article  Google Scholar 

  18. Perrin DD, Armarego WL (1988) Purification of laboratory chemicals, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  19. Lazarova N, James S, Babich J, Zubieta J (2004) Inorg Chem Commun 7:1023–1026

    Article  CAS  Google Scholar 

  20. Moura C, Esteves T, Gano L, Raposinho PD, Paulo A, Santos I (2010) New J Chem 34:2564–2578

    Article  CAS  Google Scholar 

  21. Merrifield RB (1985) J Am Chem Soc 85:2149–2154

    Article  Google Scholar 

  22. Alves S, Paulo A, Correia JDG, Gano L, Smith CJ, Hoffman TJ, Santos I (2005) Bioconjug Chem 16:438–449

    Article  PubMed  CAS  Google Scholar 

  23. Troutner DE, Volkert WA, Hoffman TJ, Holmes RA (1984) Int J Appl Radiat Isot 35:467–470

    Article  PubMed  CAS  Google Scholar 

  24. Abney JR, Cutler B, Fillbach ML, Axelrod D, Scalettar BA (1997) J Cell Biol 137:1459–1468

    Article  PubMed  CAS  Google Scholar 

  25. Smith CJ, Sieckman GL, Owen NK, Hayes DL, Mazuru DG, Kannan R, Volkert WA, Hoffman TJ (2003) Cancer Res 63:4082–4088

    PubMed  CAS  Google Scholar 

  26. Vogt W (1995) Free Radic Biol Med 18:93–105

    Article  PubMed  CAS  Google Scholar 

  27. Smith CJ, Gali H, Sieckman GL, Higginbotham C, Volkert WA, Hoffman TJ (2003) Bioconjug Chem 14:93–102

    Article  PubMed  CAS  Google Scholar 

  28. Zhang H, Chen J, Waldherr C, Hinni K, Waser B, Reubi JC, Maecke HR (2004) Cancer Res 64:6707–6751

    Article  PubMed  CAS  Google Scholar 

  29. Vigna SR (1989) Biol Bull 177:192–194

    Article  CAS  Google Scholar 

  30. Alves S, Correia JDG, Santos I, Veerendra B, Sieckman GL, Hoffman TJ, Rold TL, Figueroa SD, Retzloff L, McCrate J, Prasanphanich A, Smith CJ (2006) Nucl Med Biol 33:625–634

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

T.E. thanks the FCT for a doctoral research grant (SFRH/BD/29154/2006). COST Action D39 is also acknowledged. The quadruple ion trap mass spectrometer was acquired with the support of the Programa Nacional de Reequipamento Científico (contract REDE/1503/REM/2005-ITN) of Fundação para a Ciência e a Tecnologia and is part of Rede Nacional de Espectrometria de Massa (RNEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, T., Marques, F., Paulo, A. et al. Nuclear targeting with cell-specific multifunctional tricarbonyl M(I) (M is Re, 99mTc) complexes: synthesis, characterization, and cell studies. J Biol Inorg Chem 16, 1141–1153 (2011). https://doi.org/10.1007/s00775-011-0803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0803-x

Keywords

Navigation