Skip to main content
Log in

Analysis of explosives using differential mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Characterization of ions from eight explosives (2,4,6-trinitrotoluene, pentaerythritol tetranitrate, 2,4,6-trinitrophenol, 2,4-dinitrotoluene, erythritol tetranitrate, hexamethylene triperoxide diamine, 2,4,6-trinitrophenylmethylnitramine and 1,3,5-trinitro-perhydro-1,3,5-triazine) using differential mobility spectrometry (DMS) with 63Ni as an ionization source was performed. Presented results of explosive analysis have been evaluated by use of special software tool which communicates with DMS in real time. This tool was developed for visualization, identification and comparison of measured data. Each explosive provides characteristic signal at a specific compensation voltage under a fixed dispersion field. Peaks in DMS spectra for these ions were confined to a range of compensation voltages between −1.61 to +1.71 V at RF = 1060 V. We calculated specific alpha coefficients (α2 and α4) to obtain a nonlinear function of explosives, based on their DMS spectra. Dependence of mobility for measured explosives ions in electric field at E/N values between 0 to 120 Td were used to inspectional graphical differentiation of explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aksenov AA et al. (2014) Detection of huanglongbing disease using differential mobility spectrometry. Anal Chem 86:2481–2488. doi:10.1021/ac403469y

    Article  CAS  Google Scholar 

  2. Barnett DA, Ells B, Guevremont R, Purves RW (2002) Application of ESI-FAIMS-MS to the analysis of tryptic peptides. J Am Soc Mass Spectrom 13:1282–1291. doi:10.1016/S1044-0305(02)00527-5

    Article  CAS  Google Scholar 

  3. Buryakov IA (2003) Qualitative analysis of trace constituents by ion mobility increment spectrometer. Talanta 61:369–375. doi:10.1016/S0039-9140(03)00305-9

    Article  CAS  Google Scholar 

  4. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK (1993) A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process 128:143–148. doi:10.1016/0168-1176(93)87062-W

    Article  CAS  Google Scholar 

  5. Canterbury JD, Yi X, Hoopmann MR, MacCoss MJ (2008) Assessing the dynamic range and peak capacity of nanoflow LC − FAIMS − MS on an ion trap mass spectrometer for proteomics. Anal Chem 80:6888–6897. doi:10.1021/ac8004988

    Article  CAS  Google Scholar 

  6. Crawford CL, Hill HH (2013) Comparison of reactant and analyte ions for 63Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry. Talanta 107:225–232. doi:10.1016/j.talanta.2013.01.009

    Article  CAS  Google Scholar 

  7. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015a) Review on Ion Mobility Spectrometry. Part 1: current instrumentation Analyst doi:10.1039/c4an01100g

  8. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015b) Review on Ion Mobility Spectrometry. Part 2: hyphenated methods and effects of experimental parameters Analyst doi:10.1039/c4an01101e

  9. Cumeras R et al. (2012) Finite-element analysis of a miniaturized ion mobility spectrometer for security applications sens actuators, B 170:13–20 doi:10.1016/j.snb.2010.11.047

  10. Eiceman GA, Krylov EV, Krylova NS, Nazarov EG, Miller RA (2004) Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem 76:4937–4944. doi:10.1021/ac035502k

    Article  CAS  Google Scholar 

  11. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058:3–19. doi:10.1016/j.chroma.2004.08.119

    Article  CAS  Google Scholar 

  12. Guevremont R, Ding L, Ells B, Barnett DA, Purves RW (2001) Atmospheric pressure ion trapping in a tandem FAIMS–FAIMS coupled to a TOFMS: studies with electrospray generated gramicidin S ions. J Am Soc Mass Spectrom 12:1320–1330. doi:10.1016/S1044-0305(01)00321-X

    Article  CAS  Google Scholar 

  13. Guevremont R, Purves R (2010) Faims apparatus and method with ion diverting device. Google Patents,

  14. Guevremont R, Purves R, Barnett D (2004) Spherical side-to-side FAIMS. Google Patents,

  15. Khayamian T, Tabrizchi M, Jafari MT (2003) Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta 59:327–333. doi:10.1016/S0039-9140(02)00521-0

    Article  CAS  Google Scholar 

  16. Krylov EV, Nazarov EG (2009) Electric field dependence of the ion mobility. Int J Mass Spectrom 285:149–156. doi:10.1016/j.ijms.2009.05.009

    Article  CAS  Google Scholar 

  17. Krylov EV, Nazarov EG, Miller RA (2007) Differential mobility spectrometer: Model of operation. Int J Mass Spectrom 266:76–85. doi:10.1016/j.ijms.2007.07.003

    Article  CAS  Google Scholar 

  18. Lee J, Park S, Cho SG, Goh EM, Lee S, Koh S-S, Kim J (2014) Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry–mass spectrometry. Talanta 120:64–70. doi:10.1016/j.talanta.2013.11.059

    Article  CAS  Google Scholar 

  19. Li J, Purves RW, Richards JC (2004) Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Anal Chem 76:4676–4683. doi:10.1021/ac049850d

    Article  CAS  Google Scholar 

  20. Mohsen Y, Gharbi N, Lenouvel A, Guignard C (2014) Detection of Δ9-Tetrahydrocannabinol, Methamphetamine and Amphetamine in air at low ppb level using a Field Asymmetric Ion Mobility Spectrometry microchip sensor. Procedia Eng 87:536–539. doi:10.1016/j.proeng.2014.11.542

    Article  CAS  Google Scholar 

  21. Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure Effects in Differential Mobility Spectrometry. Anal Chem 78:7697–7706. doi:10.1021/ac061092z

    Article  CAS  Google Scholar 

  22. Papanastasiou D, Wollnik H, Rico G, Tadjimukhamedov F, Mueller W, Eiceman GA (2008) Differential mobility separation of ions using a rectangular asymmetric waveform. J Phys Chem A 112:3638–3645. doi:10.1021/jp711732c

    Article  CAS  Google Scholar 

  23. Prieto M, Yost R (2011) Spherical FAIMS: comparison of curved electrode geometries. Int J Ion Mobil Spectrom 14:61–69. doi:10.1007/s12127-011-0073-x

    Article  Google Scholar 

  24. Robinson EW, Garcia DE, Leib RD, Williams ER (2006) Enhanced mixture analysis of poly(ethylene glycol) using high-field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 78:2190–2198. doi:10.1021/ac051709x

    Article  CAS  Google Scholar 

  25. Rutolo M, Covington J, Clarkson J, Iliescu D (2014) Detection of potato storage disease via gas analysis: a pilot study using field asymmetric ion mobility Spectrometry. Sensors 14:15939–15952

    Article  CAS  Google Scholar 

  26. Saba J, Bonneil E, Pomiès C, Eng K, Thibault P (2009) Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/orbitrap mass spectrometer. J Proteome Res 8:3355–3366. doi:10.1021/pr801106a

    Article  CAS  Google Scholar 

  27. Shvartsburg AA (2008) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS.

  28. Shvartsburg AA, Smith RD (2012) Protein analyses using differential ion mobility microchips with mass spectrometry. Anal Chem 84:7297–7300. doi:10.1021/ac3018636

    Article  CAS  Google Scholar 

  29. Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B (2009) Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 81:6489–6495. doi:10.1021/ac900892u

    Article  CAS  Google Scholar 

  30. Schumann A, Lenth C, Hasener J, Steckel V (2012) Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS). Int J Ion Mobil Spectrom 15:157–168. doi:10.1007/s12127-012-0103-3

    Article  CAS  Google Scholar 

  31. Tabrizchi M, Ilbeigi V (2010) Detection of explosives by positive corona discharge ion mobility spectrometry. J Hazard Mater 176:692–696. doi:10.1016/j.jhazmat.2009.11.087

    Article  CAS  Google Scholar 

  32. Tam M, Hill HH (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem 76:2741–2747. doi:10.1021/ac0354591

    Article  CAS  Google Scholar 

  33. Wu ST, Xia Y-Q, Jemal M (2007) High-field asymmetric waveform ion mobility spectrometry coupled with liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-FAIMS-MS/MS) multi-component bioanalytical method development, performance evaluation and demonstration of the constancy of the compensation voltage with change of mobile phase composition or flow rate. Rapid Commun Mass Spectrom 21:3667–3676. doi:10.1002/rcm.3264

    Article  CAS  Google Scholar 

  34. Xia Y-Q, Wu ST, Jemal M (2008) LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components. Anal Chem 80:7137–7143. doi:10.1021/ac8010846

    Article  CAS  Google Scholar 

  35. Zhang J, Li L-F, Guo D-P, Zhang Y, Wang Q, Li P, Wang X-Z (2013) Determination of hazardous chemicals by microchip-based field asymmetric ion mobility spectrometric technique. Chin J Anal Chem 41:986–992. doi:10.1016/S1872-2040(13)60740-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research plan No. VG20132015107 “DRAGON - The Hand-held Narcotic Compounds Sniffer & Analyzer (2013-2015, MV0/VG)”, which is financed by the Ministry of the Interior of the Czech Republic. (Security Research for the Needs of the State 2010-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bajerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlačka, M., Bajerová, P., Kortánková, K. et al. Analysis of explosives using differential mobility spectrometry. Int. J. Ion Mobil. Spec. 19, 31–39 (2016). https://doi.org/10.1007/s12127-016-0190-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0190-7

Keywords

Navigation