Skip to main content

Advertisement

Log in

MiR-132 Is Upregulated by Ischemic Preconditioning of Cultured Hippocampal Neurons and Protects them from Subsequent OGD Toxicity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We explored the response of a panel of selected microRNAs (miRNAs) in neuroprotection produced by ischemic preconditioning. Hippocampal neuronal cultures were exposed to a 30-min oxygen–glucose deprivation (OGD). In our hands, this duration of OGD does not result in neuronal loss in vitro but significantly reduces neuronal death from a subsequent ‘lethal’ OGD insult. RT-qPCR was used to determine the expression of 16 miRNAs of interest at 1 and 24-h post-OGD. One miRNA (miR-98) was significantly decreased at 1-h post-OGD. Ten miRNAs (miR-9, miR-21, miR-29b, miR-30e, miR-101a, miR-101b, miR-124a, miR-132, miR-153, miR-204) were increased significantly at 24-h post-OGD. No miRNAs were decreased at 24-h. The increases observed in the 24-h group suggested that these miRNAs might play a role in preconditioning-induced neuroprotection. We selected the widely studied miR-132, a brain enriched, CREB regulated miRNA, to explore its role in simulated ischemic insults. We found that hippocampal neurons transduced with lentiviral vectors expressing miR-132 were protected from OGD and NMDA treatment, but not hydrogen peroxide. These findings add to the growing literature that targeting neuroprotective pathways controlled by miRNAs may represent a therapeutic strategy for the treatment of ischemic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballestar E, Wolffe AP (2001) Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem 268:1–6

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Thuemmler F, van Laake LW, et al. (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, et al. (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CS, Alonso JL, Ostuni E, et al. (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307:355–361

    Article  CAS  PubMed  Google Scholar 

  • Dharap A, Bowen K, Place R, et al (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J Cereb Blood Flow Metab 29(4):675–687

  • Edbauer D, Neilson JR, Foster KA, et al. (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  CAS  PubMed  Google Scholar 

  • Glover CPJ, Heywood DJ, Bienemann AS, et al. (2004) Adenoviral expression of CREB protects neurons from apoptotic and excitotoxic stress. Neuroreport 15:1171–1175

    Article  CAS  PubMed  Google Scholar 

  • Gogas KR (2006) Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 6:68–74

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Lee J, Seo H-H, et al. (2015) Na(+)-Ca(2+) exchanger targeting miR-132 prevents apoptosis of cardiomyocytes under hypoxic condition by suppressing Ca(2+) overload. Biochem Biophys Res Commun 460:931–937

    Article  CAS  PubMed  Google Scholar 

  • Hwang J-Y, Kaneko N, Noh K-M, et al. (2014) The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol 426:3454–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, et al. (2011) miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol 179:2519–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung BP, Zhang G, Ho W, et al. (2002) Transient forebrain ischemia alters the mRNA expression of methyl DNA-binding factors in the adult rat hippocampus. Neuroscience 115:515–524

    Article  CAS  PubMed  Google Scholar 

  • Kelly S, Zhang ZJ, Zhao H, et al. (2002) Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia: influence of Bcl-2. Ann Neurol 52:160–167

    Article  CAS  PubMed  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, et al. (2004a) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly S, Zhao H, Hua Sun G, et al. (2004b) Glycogen synthase kinase 3beta inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol 188:378–386

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Inoue K, Ishii J, et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon H, Horie T, et al. (2015) MicroRNA-33 regulates ApoE lipidation and amyloid-β metabolism in the brain. J Neurosci 35:14717–14726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein ME, Klein ME, Lioy DT, et al. (2007) Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci 10:1513–1514

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  • Lee YB, Bantounas I, Lee DY, et al. (2008) Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res 37(1):123–8. doi:10.1093/nar/gkn920

  • Lin W-Y, Chang Y-C, Lee H-T, Huang C-C (2009) CREB activation in the rapid, intermediate, and delayed ischemic preconditioning against hypoxic-ischemia in neonatal rat. J Neurochem 108:847–859

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Tian Y, Ander B et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101

  • Lusardi TA, Farr CD, Faulkner CL et al (2010) Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab 30(4):744–756

  • Magill ST, Cambronne XA, Luikart BW, et al. (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 107:20382–20387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meller R, Minami M, Cameron JA, et al. (2005) CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 25:234–246

    Article  CAS  PubMed  Google Scholar 

  • Miska EA, Alvarez-Saavedra E, Townsend M, et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68

    Article  PubMed  PubMed Central  Google Scholar 

  • Mushtaq G, Greig NH, Anwar F, et al (2015) miRNAs as circulating biomarkers for Alzheimer’s disease and Parkinson’s disease. [Epub ahead of print]

  • Nakazawa T, Watabe AM, Tezuka T, et al. (2003) p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol Biol Cell 14:2921–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa T, Kuriu T, Tezuka T, et al. (2008) Regulation of dendritic spine morphology by an NMDA receptor-associated Rho GTPase-activating protein, p250GAP. J Neurochem 105:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Nudelman A, Dirocco D, Lambert T, et al. (2009) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20(4):492–498

    Google Scholar 

  • Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506

    Article  PubMed  Google Scholar 

  • Schäbitz WR, Sommer C, Zoder W, et al. (2000) Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31:2212–2217

    Article  PubMed  Google Scholar 

  • Scott H, Howarth J, Lee Y-B, et al. (2012a) MiR-3120 is a mirror microRNA that targets heat shock cognate protein 70 and auxilin messenger RNAs and regulates clathrin vesicle uncoating. J Biochem 287:14726–14733. doi:10.1074/jbc.M111.326041

  • Scott HL, Tamagnini F, Narduzzo KE, et al. (2012b) MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex. Eur J Neurosci 36:2941–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenova MM, Mäki-Hokkonen AMJ, Cao J, et al. (2007) Rho mediates calcium-dependent activation of p38alpha and subsequent excitotoxic cell death. Nat Neurosci 10:436–443

    CAS  PubMed  Google Scholar 

  • Shaked I, Meerson A, Wolf Y, et al. (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973

    Article  CAS  PubMed  Google Scholar 

  • Smirnova L, Gräfe A, Seiler A, et al. (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  • Smith PY, Delay C, Girard J et al (2011) MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20(20):4016–4024

  • Strum JC, Johnson JH, Ward J, et al. (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    Article  CAS  PubMed  Google Scholar 

  • Vo N, Klein ME, Varlamova O, et al. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 102:16426–16431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner W, Horn P, Castoldi M, et al. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS one 3:e2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanamoto H, Mizuta I, Nagata I, et al. (2000a) Infarct tolerance accompanied enhanced BDNF-like immunoreactivity in neuronal nuclei. Brain Res 877:331–344

    Article  CAS  PubMed  Google Scholar 

  • Yanamoto H, Nagata I, Sakata M, et al. (2000b) Infarct tolerance induced by intra-cerebral infusion of recombinant brain-derived neurotrophic factor. Brain Res 859:240–248

    Article  CAS  PubMed  Google Scholar 

  • Yin KJ, Deng Z, Huang HR et al (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26

  • Zhao J, Pei D-S, Zhang Q-G, Zhang G-Y (2007) Down-regulation Cdc42 attenuates neuronal apoptosis through inhibiting MLK3/JNK3 cascade during ischemic reperfusion in rat hippocampus. Cell Signal 19:831–843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Youn-Bok Lee, Dr. Kate Whittington and Dr. Liang-Fong Wong for their help and advice during this project. This work was funded by University of Bristol funds to SK, grants to JBU from the Wellcome Trust and BBSRC. MPK held a BBSRC CASE studentship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James B. Uney or Stephen Kelly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keasey, M.P..., Scott, H.L., Bantounas, I. et al. MiR-132 Is Upregulated by Ischemic Preconditioning of Cultured Hippocampal Neurons and Protects them from Subsequent OGD Toxicity. J Mol Neurosci 59, 404–410 (2016). https://doi.org/10.1007/s12031-016-0740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0740-9

Keywords

Navigation