粉末冶金原理与工艺范文

时间:2023-11-23 17:38:29

粉末冶金原理与工艺

粉末冶金原理与工艺篇1

【关键词】粉末冶金材料 热处理 密度 强度 淬透性 碳氮共渗

中图分类号:J523 文献标识码:A 文章编号:1009-914X(2013)35-079-01

一. 前言

粉末冶金材料在现代工业中的应用越来越广泛,特别是汽车工业、生活用品、机械设备等的应用中,粉末冶金材料已经占有很大的比重。它们在取代低密度、低硬度和强度的铸铁材料方面已经具有明显优势,在高硬度、高精度和强度的精密复杂零件的应用中也在逐渐推广,这要归功于粉末冶金技术的快速发展。全致密钢的热处理工艺已经取得了成功,但是粉末冶金材料的热处理,由于粉末冶金材料的物理性能差异和热处理工艺的差异,还存在着一些缺陷。各铸造冶炼企业在粉末冶金材料的技术研究中,热锻、粉末注射成型、热等静压、液相烧结、组合烧结等热处理和后续处理工艺,在粉末冶金材料的物理性能与力学性能缺陷的改善中,取得了一定效果,提高了粉末冶金材料的强度和耐磨性,将大大扩展粉末冶金的应用范围。

二. 粉末冶金材料的热处理工艺

粉末冶金材料的热处理要根据其化学成分和晶粒度确定,其中的孔隙存在是一个重要因素,粉末冶金材料在压制和烧结过程中,形成的孔隙贯穿整个零件中,孔隙的存在影响热处理的方式和效果。粉末冶金材料的热处理有淬火、化学热处理、蒸汽处理和特殊热处理几种形式:

1.淬火热处理工艺

粉末冶金材料由于孔隙的存在,在传热速度方面要低于致密材料,因此在淬火时,淬透性相对较差。另外淬火时,粉末材料的烧结密度和材料的导热性是成正比关系的;粉末冶金材料因为烧结工艺与致密材料的差异,内部组织均匀性要优于致密材料,但存在较小的微观区域的不均匀性,所以,完全奥氏体化时间比相应锻件长50%,在添加合金元素时,完全奥氏体化温度会更高、时间会更长。比如,以不同化合碳含量的烧结碳钢为例,淬火温度如表1所示,

在粉末冶金材料的热处理中,为了提高淬透性,通常加入一些合金元素如:镍、钼、锰、铬、钒等,它们的作用跟在致密材料中的作用机理相同,可明显细化晶粒,当其溶于奥氏体后会增加过冷奥氏体的稳定性,保证淬火时的奥氏体转变,使淬火后材料的表面硬度增加,淬硬深度也增加。另外,粉末冶金材料淬火后都要进行回火处理,回火处理的温度控制对粉末冶金材料的的性能影响较大,因此要根据不同材料的特性确定回火温度,降低回火脆性的影响,一般的材料可在175-250℃下空气或油中回火0.5-1.0h。

2.化学热处理工艺

化学热处理一般都包括分解、吸收、扩散三个基本过程,比如,渗碳热处理的反应如下:

2CO≒[C]+CO2 (放热反应)

CH4≒[C]+2H2 (吸热反应)

碳分解出后被金属表面吸收并逐渐向内部扩散,在材料的表面获得足够的碳浓度后再进行淬火和回火处理,会提高粉末冶金材料的表面硬度和淬硬深度。由于粉末冶金材料的孔隙存在,使得活性炭原子从表面渗入内部,完成化学热处理的过程。但是,材料密度越高,孔隙效应就越弱,化学热处理的效果就越不明显,因此,要采用碳势较高的还原性气氛保护。根据粉末冶金材料的孔隙特点,其加热和冷却速度要低于致密材料,所以加热时要延长保温时间,提高加热温度。

粉末冶金材料的化学热处理包括渗碳、渗氮、渗硫和多元共渗等几种形式,在化学热处理中,淬硬深度主要与材料的密度有关。因此,可以在热处理工艺上采取相应措施,比如:渗碳时,在材料密度大于7g/cm3时适当延长时间。通过化学热处理可提高材料的耐磨性,粉末冶金材料的不均匀奥氏体渗碳工艺,使处理后的材料渗层表面的含碳量可达2%以上,碳化物均匀分布于渗层表面,能够很好地提高硬度和耐磨性能。

3.蒸汽处理

蒸汽处理是把材料通过加热蒸汽使其表面氧化,在材料表层形成氧化膜,从而改善粉末冶金材料的性能。特别是对于粉末冶金材料的表面的防腐,其有效期比发蓝处理效果明显,处理后的材料硬度和耐磨性明显增加。

4.特殊热处理工艺

特殊热处理工艺是近些年来科技发展的产物,包括感应加热淬火、激光表面硬化等。感应加热淬火是在高频电磁感应涡流的影响下,加热温度提升快,对于表面硬度的增加有显著效果,但是容易出现软点,一般可以采取间断加热法延长奥氏体化时间;激光表面硬化工艺是以激光为热源使金属表面快速升温和冷却,使奥氏体晶粒内部的亚结构来不及回复再结晶而获得超细结构。

三. 粉末冶金材料热处理的影响因素分析

粉末冶金材料在烧结过程中生成的孔隙是其固有特点,也给热处理带来了很大影响,特别是孔隙率的变化与热处理的关系,为了改善致密性和晶粒度,加入的合金元素也对热处理有一定影响:

1.孔隙对热处理过程的影响

粉末冶金材料在热处理时,通过快速冷却抑制奥氏体扩散转变成其他组织,从而获得马氏体,而孔隙的存在对材料的散热性影响较大。通过导热率公式:

导热率=金属理论导热率×(1-2×孔隙率)/100

可以看出,淬透性随着孔隙率的增加而下降。另一方面,孔隙还影响材料的密度,对材料热处理后表面硬度和淬硬深度的效果又因密度影响而有关联,降低了材料表面硬度。而且,因为孔隙的存在,淬火时不能用盐水作为介质,以免因盐分残留造成腐蚀,所以,一般热处理是在真空或气体介质中进行的。

2.孔隙率对热处理时表面淬硬深度的影响

粉末冶金材料的热处理效果与材料的密度、渗(淬)透性、导热性和电阻性有关,孔隙率是造成这些因素的最大原因,孔隙率超过8%时,气体就会通过空隙迅速渗透,在进行渗碳硬化时,增加渗碳深度,表面硬化的效果就会降低。而且,如果渗碳气体渗入速度过快,在淬火中会产生软点,降低表面硬度,使材料脆变和变形。

3.合金含量和类型对粉末冶金热处理的影响

合金元素中常见的是铜和镍,它们的含量与类型都会对热处理效果产生影响。热处理硬化深度随铜含量、碳含量的增加而逐渐增高达到一定含量时又逐渐降低;镍合金的刚度要大于铜合金,但是镍含量的不均匀性会导致奥氏体组织不均匀;

4.高温烧结的影响

高温烧结虽然可以获得最佳的合金化效果和促进致密化,但是,烧结温度的不同,特别是温度较低时,会导致热处理的敏感性下降(固溶体中的合金减少)和机械性能下降。因此,采用高温烧结,辅助以充分的还原气氛,可以获得较好的热处理效果。

四、结语

粉末冶金材料的热处理工艺是一个复杂的过程,它与孔隙率、合金类型、合金元素含量、烧结温度有关系,同致密材料相比,内部的均匀性较差,要想获得较高的淬透性,要提高完全奥氏体化温度并延长时间,不均匀奥氏体渗碳可得到不受奥氏体饱和碳浓度限制的高碳浓度。另外,加入合金元素也可提高淬透性。蒸汽处理可显著提高其防腐性能和表面硬度。

参考文献:

[1]曹放,粉末冶金材料的热处理工艺试验,粉末冶金技术,1993,11

[2]刘传习,周作平,解子章等,粉末冶金工艺学,科学普及出版社,1987,27

粉末冶金原理与工艺篇2

关键词: 转向管柱; 粉末冶金; 移动架; 模具设计; 工艺; 材料

中图分类号: TF 124.32文献标志码: A

The Development of Powder Metallurgy Movable Frame

of Automotive Steering Column

PENG Jingguang, CHEN Di

(Shanghai Automotive Powder Metallurgy Co., Ltd., Shanghai 200072, China)

Abstract: The movable frame is one of the critical parts of automotive steering column.This paper dealt with the structure,performance,material selection and production process of it.It was complicated in shape with high precision.It hence always failed if it was produced with traditional machining method.In order to achieve massive production,powder metallurgy was used to produce parts of automotive steering column,which could improve the production efficiency and reduce the costs.Therefore,powder metallurgy movable frame with high precision,high strength complicated shape and in accordance with actual conditions could be developed by working out rational technology.

Keywords: steering column; powder metallurgy; movable frame; mold design; technology; material

粉末冶金是一门制造金属与非金属粉末和以其为原料,经过压制、烧结及各种后续处理工艺制取金属材料和制品的科学技术,是一项以较低的成本制造高性能铁基粉末冶金制品的技术[1-2].近年来,随着汽车行业飞速发展,为了降低汽车的生产成本,越来越多的零部件用粉末冶金方法来制备.

转向管柱是车辆转向系统中的重要部件.其主要作用是通过接收驾驶员作用在方向盘上的扭矩,将其传递到转向器,从而使方向盘的转动转化成齿条的移动,控制车轮按照预期方向运动[3].转向管柱中的粉末冶金移动架(如图1所示)是转向管柱实现前后上下4个方向调整的核心零件,分别和另外2个粉末冶金齿条相配合,实现方向盘的调节功能.同时,转向管柱的移动架是汽车中的安全件,对密度和性能有一定的要求,且需要热处理.该产品若采用传统机加工的方式,几乎不能加工,形状非常复杂,且精度要求较高.因此,为了实现大批量生产,使用粉末冶金的方法来制造该零件,解决了目前生产效率低、制造成本高的问题.

1零件的结构和性能特点

粉末冶金移动架,其形状复杂,在整个转向柱中起承上启下的关联作用,分别与轴向架、径向架的齿部咬合,使转向管柱具有多方向的调节作用(如图2所示).包括平齿面A、斜齿面B、限位凹面C、带键槽的内孔D,以及限位柱E.尺寸精度方面,其中齿形轮廓度要求0.05 mm,齿面高度差≤0.15 mm,限位柱和限位凹面轮廓度0.1 mm.

2材料和压机的选择

2.1材料的选择

鉴于产品的结构特点、性能以及材料要求(材料牌号:Sint D11,w碳>0.75%,w铜为1%~5%),基础铁粉选择雾化铁粉,选用硬脂酸锌为剂.硬脂酸锌熔点低,稍加热就能使其熔化成液相来减少粉末的内外摩擦,使其容易成形.

2.2压机的选择

根据产品的截面积和密度要求,测算出产品大概需要50 t的压制压力来制备.压制压力F可按下式计算[4]:

F=kps(1)

式中:p为单位压力;s为受压横截面积;k为安全系数,k=1.15~1.50,取1.20.

根据式(1)计算压制压力,则F=1.2×5×8.4=50.4 t.

同时需要上一下三的模具结构,考虑形状和结构特别复杂,所以选择使用160 t机械式压力成形机和上二下三的标准模架.

3工艺流程设计

3.1工艺的制定

根据产品要求,工艺制定如下:混料、压制、烧结、振动去毛刺、渗碳淬火、清洗和包装.由于产品精度要求高,在试验过程中需严格控制磕碰伤.

3.2粉末的混合

采用双锥型自动混料设备,其优点在于无死角、效率高、易清理,非常适合大批量生产[4].混料后粉末泊松比为2.8~3.2,压缩性大于7.0.由于产品具有很高的硬度要求,为保证成分的稳定性,采用全自动秤料系统.

3.3压制工艺

图3为转向管柱粉末冶金移动架压制成形过程,分为粉末充填、粉末传输、压制和脱模4个阶段.

由于采用上一下三的成形结构,产品每部分充填值都要非常精确,才能保证压制时每段密度是均匀的.为保证产品上下段密度均匀,成形过程中采用阴模和芯棒同时浮动.脱模时,采用保压拉下式脱模,并以内下模为基准点,把产品完全从模具中脱出.压制压力50 t,压制效率6件/min,产品高度直接达到成品要求.

3.4烧结工艺

烧结是粉末冶金生产过程中最基本的工序之一.所谓烧结,就是将粉末压坯在低于其主要成分熔点的温度下进行加热,从而提高压坯强度和各种力学性能的一种过程[2].FeCCu三元体系的烧结为有限多元系固相烧结类[2].采用连续式普通网带烧结炉进行烧结,烧结温度为1 120 ℃,烧结时间30 min,采用氨分解和氮气的还原性保护气氛,露点为-40 ℃,防止产品氧化并去除表面氧化颗粒.冷却段采用常规水冷.

3.5振动去毛刺

鉴于产品的使用工况,产品外观不允许有毛刺和飞边.移动架形状又较为复杂,采用盘刷或者喷砂的方式都不可行,所以选用钢球振动的方式去毛刺,其效率高、去毛刺效果好.去毛刺介质选用钢球,振动时间为10 min.

3.6热处理工艺

热处理采用铁基粉末冶金通用的整体渗碳淬火[5],即在分解氨气氛下,将烧结的零件加热到860 ℃,保温30 min,然后在860 ℃下将零件淬于50 ℃温油中.最后在150 ℃下回火5 min,达到硬度要求.

3.7清洗包装

由于零件用于汽车转向管柱系统,所以对产品清洁度有一定要求.采用高压油清洗工艺可以符合要求,也具有一定的效率.产品清洗后,采用散装的方式进行包装.

4模具的设计

4.1成形模具主要零件的尺寸计算

4.1.1阴模高度

阴模高度应满足粉末充填和定位的需要.因此,阴模高度一般包括粉末充填的高度、下模冲的定位高度和上模冲压缩粉末前进入阴模的深度[6],即

H阴=H粉+h上+h下(2)

下模冲的定位高度h下是根据下模冲与阴模之间的装配需要而选定的.总的来说,以能满足下模冲在阴模的定位需要为原则,一般取10~30 mm,本文中取20 mm.上模冲的定位高度h上取0.综上,阴模高度为:

H阴=65+20+0=85 mm

4.1.2阴模和模冲尺寸确定

由于移动架形状特别复杂,所以每个模冲的尺寸需要同比例缩放,由材料试验结果得到,压制弹性后效为0.15%,烧结变形量为0.25%.根据模具尺寸计算公式如下[6]:

D=D产(1-t-s)(3)

式中:D为模具尺寸;t为压坯的径向弹性后效;s为压坯的径向烧结收缩率;D产为产品外径.通过该公式可计算出每个模冲的尺寸.

4.1.3模冲高度的计算

由于采用上一下三的成形结构,上模高度只需采用闭合高度的最小值,通常取100 mm.

外下模计算如下[6-9]:

H外下模=H阴+H法兰+H脱模(4)

式中:H外下模为外下模高度;H阴为阴模高度;H法兰为安装用法兰高度,通常取15 mm;H脱模为脱模所需要高度,通常取10~20 mm.

根据式(4),H外下模=85+15+10=110 mm.

中下模计算如下[6-9]:

H中下模=H外下模+H法兰+H脱模+H垫块(5)

式中:H中下模为中下模高度;H垫块为外下模垫块高度.

根据式(5),H中下模=110+15+10+50=185 mm.

内下模计算如下[6-9]:

H内下模=H中下模+H法兰+H脱模+H垫块

式中:H内下模为中下模高度.

根据式(5),H内下模=185+15+10+40=250 mm.

4.2模具设计中的注意事项

移动架较为复杂,产品台阶数多,设计过程特别需要注意模具的分型区域.同时,单个模冲的成形面积特别小,模冲又特别长,热处理硬度需要控制在特别紧的范围内.在试验过程中,模具寿命是难点,需要在脱模、圆角过渡等方面特别注意.

通过大量的理论计算和实际生产的细节讨论,制定了转向管柱移动架生产的模具样式和具体的试验工艺.通过混料、压制、烧结和热处理等一系列工序设计,对移动架的开发进行了详细的说明.在所有的工作中,模具设计是重点.经过对移动架的设计,可以制造该零件为生产所需.目前该产品已经实现批量生产,取得了较好的经济效益,解决了机加工高成本和低效率的问题.

参考文献:

[1]倪冠曹.汽车用粉末冶金件对铁粉的需求[J].粉末冶金工业,2003,13(2):26-28.

[2]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

[3]刘海峰,张鹏.转向管柱转动力矩不确定度评定[J].汽车零部件,2011(8):33-34.

[4]韩风麟.粉末冶金设备实用手册[M].北京:冶金工业出版社,1997.

[5]美国金属学会.金属手册[M].北京:机械工业出版社,1994.

[6]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.

[7]奏万忠.粉末冶金异形齿轮的开发[J].粉末冶金工业,2007,17(4):19-21.

[8]师磊.粉末冶金正时销座的设计与开发[J].国外建材科技,2008,29(4):61-65.

粉末冶金原理与工艺篇3

关键词:粉末冶金技术;新能源材料;应用

前言

为了寻求长远的发展,需要重视能源问题。在全球经济以及热口增长的环境下,传统能源彰显匮乏性,无法满足社会发展的实际需求。同时,也无法进行再生。因此,面对严重的资源危机,要对新能源的开发与利用作为项目对待。粉末冶金对传统冶金技术进行了发扬过大,积极融合现代科技,推动信息化建设,实现现代工业的良性运转,也为新能源的开发提供更多的技术保障。

1 对粉末冶金技术特征的分析

粉末冶金技术具有长远的历史,其主要立足传统冶金技术,达到了对诸多学科知识的融会贯通,形成优势突出的新型冶金技术。粉末冶金主要对象是粉末状的矿石。在传统的冶金方法中,矿石的形式为整块,先进行提炼,而后进行冶炼。应用传统技术,块状矿石提炼技术受制于技术和矿石的大小,只能达到80%左右的利用率,产生大量材料的废置。但是,在粉末冶金技术的应用下,资源利用率得以大幅提升,有效降低资源浪费。另外,块状形式的矿石材料长期处于露天堆放,对环境产生不良影响,甚至破坏。由此可见,冶金技术的改善势在必行,要重视冶金技术水平的提升,使得材料各尽所用,发挥不同冶金材料的作用,切实提升使用效率,形成高性能的新材料,达到成本的降低。利用现代粉末冶金技术,能够对废矿石、旧金属材料进行再利用,有效节约资源,极大推动经济效益的获取,对可持续发展意义重大。因此,粉末冶金技术在原材料选择方面相对较为宽松,能够充分利用废旧金属、矿石等,形成不规则的粉末,满足原材料节约和回收的目标。另外,鉴于粉末冶金可塑性以及相关材料的添加,促进性能的增强和平衡。

2 对新能源技术的阐述

在科技的推动下,新能源技术逐渐被科学界重视。在传统能源开发与应用中,出现严重的资源匮乏现象,加之对环境的不良影响,使得新能源问题的出现备受关注。新能源材料需要在开发、存储以及转化方面具有突出优势。由此可见,新能源材料是发展新能源的关键因素。为了更好地实现转化和存储,其在配件、生产要素等方面都极具特色,与传统能源行业的材料截然不同。粉末冶金技术在整个新能源开发应用中占据举足轻重的地位。

3 系统介绍粉末冶金技术的类型

3.1 传统粉末冶金材料

首先,是铁基粉末冶金。这种材料是最传统,也是最为关键的冶金材料,在制造业中应用较为广泛。随着现代科技的不断发展,其应用范围不断拓展。其次,铜基粉末冶金材料。这种材料类型较多,耐腐蚀性突出,在电器领域应用较多。再次,硬质合金材料。这种材料具有较高的熔点,硬度和强度都十分高,其应用的领域主要是高端技术领域,如核武器等。最后,粉末冶金电工材料和摩擦分类,主要应用在电子领域。随着通讯技术的不断发展,粉末冶金材料的需求量增大。另外,粉末冶金材料在真空技术领域也得到推广。摩擦材料耐摩擦性较强,促使物体运动减速,抑或是停止,在摩擦制动领域应用较多。

3.2 对现代先进粉末冶金材料的介绍

首先,信息范畴内的粉末冶金材料。立足信息领域,主要是指粉末冶金软磁材料。具体讲,是指金属类和铁氧体材料。随着对磁性记录材料的研究,在很大程度上推动了粉末冶金软材料的需求。其次,能源领域内的粉末冶金材料。能源材料的研发推动能源发展,其中,主要涉及储能和新能源材料。全球经济的发展使得能源需求量增大,传统能源彰显不足,因此,新能源开发势在必行,尤其是燃料电池和太阳能的开发。再次,生物领域的粉末冶金技术。生物材料技术的发展对整个社会具有不可替代的作用。要将生物技术列入国家发展计划。在生物材料中,主要包含医用和冶金材料两大类,在维护身心健康的同时,加快金属行业的进步。第四,军事领域的粉末冶金材料。在航天领域,材料的强度和硬度是重要指标,稳定性要突出,具有极强的耐高温性。在核军事范畴,粉末冶金技术也具有发展前景,更好地推动整个社会工业技术的进步。另外,新型核反应堆的建设需要具有较高的防辐射标准,而粉末冶金技术的支持下,切实增强核反应堆的安全性与可靠性,有效降低核辐射强度。

4 对粉末冶金技术在新能源材料中的应用的介绍

4.1 粉末冶金技术在风能材料中的应用

风能对我国而言,十分丰富,不存在污染,是新能源的主要类型。在风能发电材料中,粉末冶金技术主要实现对两种材料的制作,即即风电C组的制动片以及永磁钕铁硼材料。这两种材料的制作与整个风力发电关系密切,事关发电过程的安全性与可靠性,影响发电效率的高低。风能发电机制动片在摩擦系数和磨损率方面,要求较高,同时,力学性能必须突出。目前,主要应用的是铜基粉末冶金技术,完成对压制制动片的制作。制动片需要在导热方面十分突出,同时,制动盘具有较小的摩擦。在应对恶劣温度环境的时候,也能够进行有效的使用。对于永磁钕铁硼,系统永磁材料代替了传统的永磁材料,烧结钕铁硼就是加入了稀土粉,利用粉末冶金工艺制备而成。

4.2 粉末冶金技术在太阳能中的应用

太阳能突出的特点是清洁性,是新型能源的一种,被商界所看好,开发价值巨大。当前,在太阳能领域,主要的发展方向为光电太阳能与热电太阳能,形成发展趋势。立足光电太阳能领域。其主导作用的部件为光电池,也就是半导体二极管,依靠光伏效应,促使太阳能有效转化为电能。目前,太阳能光电转化效率较低,对航天事业的发展产生阻碍。在粉末冶金技术的使用下,能够有效进行薄膜太阳能电池的制作,光电转化率得以显著提升。同时,粉末冶金技术也研发了多晶硅薄膜,代替了传统的晶体硅,光电转化率大幅提升。另外,粉末冶金技术与太阳能热电技术也实现了融合。当太阳进行地表照射之后,为了达到对光热技术的有效收集,需要发挥吸收板的功能。而吸收板的制作与粉末冶金技术息息相关,主要应用了其成型技术,发挥粉体在色素和粘结剂方的作用,而后混合,形成涂料,涂于基板之上。这也充分体现了粉末冶金技术在成型技术方面优势更加突出。

5 结束语

综上,通过对粉末冶金技术优势的分析,可以发现,其在新能源材料的开发和应用中极具发展潜力。粉末冶金在创造性方面十分突出,塑造性较强,使得其在新能源材料的发展和应用中占据核心地位。粉末冶金技术的工艺原理使得其在新能源开发中更具经济性与高效性。因此,要大力推进粉末冶金技术在新能源开发应用中的拓展,为新能源的可持续发展提供保障。

参考文献

[1]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工业,2009,04:41-47.

[2]邱智海,曾维平.粉末冶金技术在航空发动机中的应用[J].科技创新导报,2016,07:10-12.

[3]安鹏,彭明军,史方杰.粉末冶金技术的应用[J].化工设计通讯,2016,10:18.

粉末冶金原理与工艺篇4

关键词 :锰粉末冶金应用前景

引言: 元素锰早在1774年就被发现,但是,在钢铁工业中的重要作用直到1856年发明底吹酸性转炉,以及1864年发明平炉炼钢法之后,才为人们所认识。现在,锰作为有效而廉价的合金化元素,已成为钢铁工业中不可缺少的重要原料。约90%锰消耗于钢铁工业,用量仅次于铁,其余10%消耗于有色金属冶金、化工、电子、电池、农业等部门[4,5]。

锰及其化合物是生产粉末冶金材料的常用原料。于1950年便已经被人们认识到锰在粉末冶金材料中的重要性。此后,锰在粉末冶金工业中的应用逐渐扩大。通过开发母合金技术和预合金技术,开发了含锰系列的高强度烧结钢。并且,在其它粉末冶金材料中作为主要组元或添加组元,发挥了重要作用。本文就锰在粉末冶金材料中的应用情况进行综述。

一 锰在高强度烧结钢中的作用

将锰和硅作为合金元素同时添加的低合金烧结钢,表现出良好的强化效果和烧结尺寸稳定性,价格便宜,具有很强的竞争优势[7,8]。据相关报道,1250℃保温60 min烧结的Fe-3.2%Mn-1.4%Si-0.4% C合金,拉伸强度达800~1000 MPa。烧结铁和烧结钢主要用于制造机械零件,在选择合金元素时,必须注意到其对尺寸稳定性的影响。在一般情况下,加入硅会引起压坯在烧结时收缩,而加入锰则会引起压坯膨胀。同时加入锰和硅,能够较好控制烧结体的外观形状和尺寸[9]。在测定的5种成分试样的尺寸变化ΔL/L0中,发现Fe-2.0%Si-2.0%Mn和Fe-2.0%Si-4.0%Mn基本与纯铁相同,尺寸变化为 1.2%~1.4%;而Fe-4.0%Mn较高,约为1.7%;Fe-2.0%Si较低,约为0.7%[10]。其中列举了几种含镍、钼、铜、锰、硅烧结钢的力学性能,如表1。可以看出,同时添加锰和硅合金元素的烧结钢具有很高的性能。

同时,烧结时锰升华并形成蒸气。图1给出了Fe-45%Mn-20%Si合金在600~1200℃条件下的锰蒸气压。在添加的锰足够多的情况下,锰蒸气填充到压坯空隙中有效防止其它元素发生氧化[12,13],并在铁颗粒表面沉积,通过表面扩散、体积扩散等均匀渗入铁颗粒,甚至颗粒中心,加快合金化速率[14]。在对Fe-2.0%Si-4.0%Mn试样进行观察,发现有瞬时液相形成。液相促使合金元素快速扩散,并可能克服母合金颗粒表面氧化物层的抑制作用,使合金元素达到高度均匀化[10]。

二 改善铁基烧结材料的切削加工性能

烧结钢中添加硫化锰(MnS)后能有效减小切削力,改善其切削加工性能[22~26]。在铁基材料中,硫化锰是一种脆性的而又有作用的金属夹杂物,其强度远低于铁基体。硫化锰在材料中的作用相当于孔隙,它破坏铁基体的连续性,降低强度,从而使切削力减小。韩蕴秋等研究发现[27],烧结钢中含有锰、硫元素之后切削性能得到有效的提高,锰和硫含量分别为0.318%和0.21%的600MS牌号铁粉,烧结制得样品的平均切削力仅为295MPa,远远低于锰、硫含量较低的牌号SC-100.26的688 MPa。尹平玉等的实验结果表明[28],往Fe-2%Cu-0.5%Mo-0.6%C烧结体系中添加硫化锰粉末后,材料的切削性能大大改善。而且,添加剂对材料的烧结温度、硬度以及尺寸精度均无明显影响。

经过实验表明,304L奥氏体不锈钢中添加硫化锰后钢粉的成形性和烧结性能发生明显变化。硫化锰粉的加入降低了压坯密度,在硫化锰含量低于0.6%时,压坯收缩比和烧结坯密度随添加剂含量升高而降低;而高于0.6%之后却上升。添加硫化锰粉之后,烧结钢的耐腐蚀性变差,经10%浓度的FeCl3腐蚀液浸泡之后,样品质量损失随硫化锰添加量的增加而增加[29]。硫化锰对粉末冶金烧结钢的疲劳断裂有重要影响,裂纹萌生于样品表面或表面下层的空洞,并以多种模式扩展,但是添加硫化锰并没有改变烧结钢的疲劳机理[30,31]。同时,还发现烧结钢的抗挠强度、断裂韧性等性能不仅受硫化锰添加量的影响,而且与添加剂颗粒大小也有明显关系。硫化锰相主要分布于基体颗粒之间或孔隙当中,而颗粒内部却很少,因而硫化锰晶粒尺寸对上述性能具有直接的影响[32]。

三 烧结钢表面渗锰

烧结钢常需防磨损保护而进行热处理,包括:表面淬火、碳氮共渗、软氮化、渗硼等。采用这些方法可以获得硬化表面,但或多或少使零件尺寸变大。不宜对硬化零件作精整处理,只能以磨加工进行尺寸修正。渗锰处理可用于制造烧结耐磨零件,并能够保证零件的尺寸精度不变,避免上述缺点。使得锰的表面合金化可以在烧结过程中进行,从而免除附加的工序如渗碳、硬化和磨削。渗锰生成奥氏体锰钢表面硬化层,其性能类似于高锰钢。

表面经锰扩散处理的零件,其特性对在磨损和高温工况应用具有特殊的价值。Pohl测定了表面渗锰试样的硬度和强度(试样经450℃回火1h)。据作者的结果,在450℃测试温度下,表面渗锰零件的硬度高于碳氮共渗零件,两者分别约为400HV0.05和350HV0.05;而且,相对于室温下的硬度值,表面渗锰零件下降不多,仍有室温的80%,但碳氮共渗零件仅有50%。表面渗锰零件疲劳强度高于碳氮共渗零件,且随回火温度上升而线性增加,于450℃的值比室温时高8%。

四锰基阻尼材料

据1976年的相关报道,通过粉末冶金方法已开发成功Mn-Cu阻尼合金。烧结在露点较低的氢气中进行,最终烧结温度取决于锰含量,含55%Mn的合金约900℃,含75%Mn的合金升高到1075℃。当锰粉粒度由-100目减小到-325目时,烧结密度和拉伸强度略有增加。60Mn-40Cu合金在真空中烧结,如果烧结温度不低于氢中烧结,则锰将显著挥发。压坯在加热过程中先有百分之几的膨胀,当温度接近最终烧结温度时才发生收缩。表3列出了60%~75%Mn合金(含1%粘结剂)的拉伸强度和硬度数据。试样在氢气中加热,于760℃保温0.5h,860℃保温1h,最终烧结温度保温1h,可获得最大拉伸强度。孔隙和其他组织特性降低力学性能,但增加相对阻尼性能。材料烧结后便可获得良好的阻尼性能,从简化工艺和降低成本的角度出发,这一点是可取的。

以锰为基体的阻尼材料包括Mn-Cu、Mn-Fe及Mn-Ni合金等[33]。在Mn-Cu系的烧结过程中,表现为锰进入铜的单向扩散机制,生成单相固溶体[34]。Mn-Cu合金是良好的阻尼材料,在对Mn-Cu(70%Mn)合金回火过程中的衰减能力进行了研究[35],发现:在回火过程中,经过预先淬火的烧结样品内的γ固溶体具有与普通铸造合金极为相似的衰减方式;但不同的是,即使回火温度达到460℃,烧结合金的衰减强度也相对较低。他们认为,造成这一现象的原因与合金优异的化学均匀性有关。增加合金中铜含量,密度、硬度、声波传播速率以及泊松比等均随之提高,但杨氏模量与体弹性模量之比(E/K)却减小。E/K在2.0~2.4范围时,高锰含量对应的高E/K值的合金具有更优异的阻尼性质。烧结Mn-Cu合金含有α-Mn和γ-MnCu相,其阻尼常数在10-1量级,并且对温度和频率不敏感。当Mn-Cu合金1123K淬火后,仅由γ-MnCu单相构成。单相合金的对数衰减率与温度关系曲线上存在两个峰,分别位于223K和460K位置,该双峰强度均高于铸造生产的M2052合金。作者认为,位于223K的主峰是由微观结构中的孪晶界面引起,而另一个峰则源于面心正交结构(fct)的γ-MnCu向面心立方结构(fcc)的转变。此外,含铜、镍组元的锰合金有很高的热膨胀系数,在多种领域有应用前景,如用作热响应控制器件中的双金属片。

五锰在铝合金中的应用

锰元素添加于铝合金中通常是经熔炼-破碎后按照粉末冶金工艺完成。在熔炼冷却时,采用高的冷却速率,以避免粗大的Al6Mn相的形成,为此,在尝试了以MnAl薄饼或锰粉注射两种方式添加到铝合金基体中[38]。结果表明,前一方式依靠组元之间反应释放的热量,使锰的固溶过程不需要额外的设备就可以维持,整个过程所需温度较低;而且,材料性能对锰颗粒尺寸依赖程度小。而采用后一种方式时,由于通过高速气流载入锰金属粉末,需要补加设备。此外,采用该方法工艺周期长,操作温度也明显高于第一种方式。同时,发现锰粉粒度不论在大于还是小于最佳尺寸时,均不利于材料性能。

Al-Mn合金是常见的铝合金,它由α固溶体和Al6Mn金属间化合物两相组成[39]。金属间化合物对合金的力学性能影响很大,随化合物含量的增加,合金屈服应力和抗疲劳强度明显上升,而延伸率却降低(尤其在较低温度的工作环境中)[40]。在Al-Mn合金中添加少量铬之后合金性能改变明显,在等研究了Al-(6~8)%Mn-(1~3)%Cr合金的力学性能与成分之间的关系后。结果表明在Mn+Cr含量高于8.8%之后,合金强化程度因沉淀而明显上升。Al-7Mn-3Cr合金具有最佳的强化效果,拉伸强度达到480MPa,同时延伸率为7%。在铬添加量较低时,合金中沉淀出Al6Mn第二相;当铬添加量较高时,形成Al7Cr相,对热挤压的合金样品进行热处理后,体系中生成G相,即(Mn,Cr)Al12相。第二相的形成对影响合金微观组织和力学性能均表现出显著影响。在Al-Mn合金中加入硅元素也取得了较好的效果,Hawk等采用快速凝固技术制备了Al-12.6Mn-4.8Si合金[42]。经350℃退火处理100h后样品的微观组织非常稳定,强度和延伸率没有下降现象,在室温至380℃区间,拉伸强度从465MPa降到115MPa,延伸率从 6%上升至12%;当温度上升至425℃后,延伸率进而增加到30%。同时,合金的强度、塑性取决于应变速率,高的应变速率下强度和塑性均有所提高。蠕变测试结果表明,在测试温度范围内,合金的蠕变激活能在100~230 kJ/mol之间,应力指数介于3~5间。粉末冶金工艺制备的高强度AlMnCe合金比传统合金具有更高的耐磨损性能[43]。Al90Mn8Ce2合金在753~793K、1.2GPa条件下等静压制成形后,具有最佳的压缩强度和硬度,分别达到900MPa和26HRC,强度的提高归因于合金细小的晶粒和第二相强化[44];研究发现Al90Mn8Ce2合金具有优异的耐磨损性能,如在773K条件下,该合金的耐磨损能力是普通A355铝合金的3倍。还发现材料中的Al6Mn、Al4Ce以及Al2O3等第二相硬质颗粒,对合金耐磨损性能提高有利。

六 结束语

锰作为粉末冶金材料的主要成分或添加剂,对改善材料性能和开发新材料起到重要的作用;而且,锰的资源丰富,价格低廉。研究和开发锰的应用,无论在科学理论上还是在生产实践上,均具有重要的意义。随着市场需求的扩大和材料科学技术的发展,锰的应用前景必将更加广阔。

但是,锰的扩大应用遇到了来自自身的障碍,那就是锰容易氧化,而氧化物又难于还原。在粉末冶金生产过程中,锰的氧化一直是十分棘手的问题。随着制粉技术和烧结技术的发展,防止锰氧化的问题有所缓解,但仍未彻底解决。在提倡扩大应用锰的同时,还应加强这方面的研究,寻找合理的措施。

参考文献:

[1]杨志忠. 中国锰系铁合金的现状与发展趋势[J]. 中国锰业,2005,23(4):1-6.

[2]江权. 锰的存在及应用[J]. 中国锰业,2001,19(3):36-38.

[3]陈刚,陈鼎. 锰在有色金属中的应用[J]. 中国锰业,2003,21(1):34-37.

粉末冶金原理与工艺篇5

大马士革钢兴衰史

用现代术语来说,只含一种成分的钢称为单体钢,含两种以上成份的钢称为复合钢,大马士革钢可以看作是呈现出明显纹路的复合钢。大马士革钢在古代是高档优质钢材的代表,因为对于单体钢来说,其硬度和韧性永远是一对不可调和的矛盾――钢材的含碳量越高,硬度越高,而韧性则越低,韧性低则易折、易崩口;含碳量越低,韧性越高,硬度低则使制成的兵器易弯、易卷刃。而大马士革钢由于是以两种钢材复合而成,因此在硬度和韧性上取得了很好的平衡。此外,大马士革钢所呈现的特殊纹路也是其独有的身份特征,不仅从外观上与其他钢材区分开来,其千姿百态的纹路还具有相当高的艺术效果,体现了不同地区乃至不同制作者的独特风格。

到了近现代以后,现代工业炼钢技术飞速发展,人们不仅能够控制钢材中碳元素的含量,还可以随心所欲地控制铬、钼、钒、锰、钨、硫、磷等元素的含量,这在古代是很难做到的。这些元素对钢材的性能起到至关重要的作用,如铬可提高钢材的硬度、强度,并提高其抗氧化性,形成不锈钢,而硫、磷是有害元素,在钢材中的含量越少越好。现代技术可使化学元素含量达到最佳状态,从而使得现代单体钢的性能远远超过了古代的水平。这种情况令大马士革钢日趋没落,在很多人眼里,大马士革钢已成为一种“中看不中用”的奢侈品,只能作为单纯观赏性的工艺品把玩。

那么,假如使用两种现代单体钢结合制成大马士革钢,是不是性能更加优异呢?理论上说这是肯定的,但在实际操作当中,则面临着似乎无法克服的困难:由于现代优质钢材都是合金不锈钢,在高温条件下,钢材表面必然发生氧化,而现代优质钢中的铬、钨等元素的氧化物熔点高于钢的熔点,这些氧化物夹在欲锻合的两片钢材中间,使它们无法合为一体,即使勉强锻合,也会有“夹灰”的现象,层间结合得非常不紧密。因此,合金元素能使单体钢的性能大大提高,但同时又给折叠锻打技术制造了严重的障碍。有人采用的解决方法是在无氧环境下锻造,虽然可以成功,但这种方式成本太高,过程过于繁琐,操作难度非常高,难以得到广泛应用。

粉末冶金 峰回路转

正所谓“山重水复疑无路,柳暗花明又一村”。20世纪后期,瑞典发展起来的粉末冶金炼钢技术,为大马士革钢带来了新的转机。

上文说,现代炼钢技术可使化学元素达到最佳配比,但这种技术并非完善。传统的炼钢方法,是在炼钢炉中将液态钢水通过吹氩处理、真空脱气、炉外脱硫、直接加入某种金属等方法达到所需的各种元素的配比,然后进入由耐火砖或耐火水泥制成的钢包中,再由钢包中倒入铸模中冷却,得到钢锭。在这个过程中,炼钢炉中的各种化学元素分布是最均匀的理想状态,而进入钢包以后,温度开始降低,这时钢水中的同种成分就会发生聚集现象,等到进入铸模中完全冷却,聚集现象更加严重,化学成分就远不及在炉中时均匀了。有一句俗语说“炉中是金,包里是银,冷却是石”,就是这个意思。

而粉末冶金技术,是当钢还完全是液态时,在无氧环境中从炉口中倒出,同时以高压氮气把钢水吹成雾化状态,使其化学元素来不及聚集就迅速固化成粉末,这样才得以保持其均匀的元素分布。此后在持续高温、高压的密闭容器中,将金属粉末重新焊接为成型钢材。由于元素分布均匀,这种技术炼出的钢材明显优于普通炼钢法生产的钢材。

过去,人们最喜欢用154CM钢材制作刀具,它本来是用于制造飞机螺旋桨的,后来由机螺旋桨不再使用钢材,154CM就停产了。但刀具行业仍有需求,日本企业根据154CM元素含量的数据,用传统技术重新炼出了新的钢材,并将其命名为ATS34。瑞典Erasteel公司同样参照154CM的元素含量标准,但采用粉末冶金技术生产出了一种名为RWL34的钢材,通过对比,其性能明显优于日本的ATS34。

那么,粉末冶金是如何用于制作大马士革钢的呢?1992-1995年间,瑞典Erasteel公司在粉末钢的生产工艺流程中,增加了一套粉末分模的设备,使两种钢材的粉末通过这套分模设备按一层层的方式排列起来,再进行下一步的高温高压焊接过程,就形成了平行纹路的粉末冶金大马士革钢。采用另外不同的分模设备,还可以制成同心圆、马赛克两种纹路的钢材。这种粉末冶金的大马士革钢材具有超高的强度、层间强度、韧性和弹性,因为其突破了传统的折叠锻打制造方法,所以可以使用最合适的钢材进行熔合,完全消除了折叠锻打过程常出现的“夹灰”、层间局部焊接强度低等缺陷。此外粉末冶金制造的大马士革钢抗腐蚀性强,易于保养。这一技术现已申请了专利,并基于此在母公司的基础上专门成立了一个新公司――Damasteel。

纹路形态 无限可能

经过上面的步骤所得到的是圆柱形的钢锭,通过轧辊,可变细变长,形成棒料。Damasteel公司的棒料产品有3种基本纹路――平行纹、同心圆纹和马赛克纹。平行纹和马赛克纹的棒料还可以通过以圆柱的中心线为轴扭转,以改变其内部的纹路状态,扭转的角度不同,效果也不一样。

以这3种棒料为基础,可以制成多种纹路的板材。最直接的方式是锤锻,即用气锤直接将棒料锻造成条型钢板。由于棒料的纹路是从横截面看的,而板材的纹路是从表面看的,因此即使是直接锤锻,板材的纹路形态也会与其棒材完全不同。如同心圆的棒料锤锻后形成完全没有规则的纹路,称为随机纹;扭转过的平行纹棒料锤锻,形成扭绞纹;马赛克纹的棒料经过扭转并锤锻,形成火焰纹的板材。

要想得到更复杂的纹路,还可以采用模锻技术,这需要先制作模具,经模锻后板材的表面部分凸出,再将凸出的部分磨平,其表面就形成了与模具相似的纹路。现在常见的大玫瑰、小玫瑰、奥丁眼、鱼骨等纹路都是以同心圆棒料锤扁后模锻而成的,而天梯纹是马赛克纹棒料锤扁后模锻而成。用这种方式,只要制作相应的模具,几乎可以得到任何想要的纹路。

熔合制造 何为最佳

从理论上说,利用粉末冶金制造大马士革钢,可以选取世界上任意两种钢材熔合,但实际操作还要有所把握的。原始钢材的选择一般要考虑以下几方面因素:性能互补――成分搭配应满足于特定的应用;热处理参数――两种钢材应该有相同或近似的热处理工艺参数;热工效应――两种钢材应有相同或近似的热工效应,以保证锻打或热处理时不影响钢材性能;腐蚀纹路――两种钢材中至少一种元素含量有足够差异,以保证纹路的清晰程度。

Dama steel公司采用RWL34与PMC27两种钢材熔合以制造刀具钢材。经酸洗后,RWL34发亮,而PMC27发黑,钢材表面形成条理清晰的纹路。它的硬度可达60HRc以上,并可保持极佳的韧性。Damasteel公司将其命名为“93x.y马氏体大马士革刀具不锈钢”(Damasteel生产的大马士革钢的名称都以数字9开头,以第二位数字区分种类,x.y表示是由两种钢材复合而成)。除此之外,Damasteel公司还有3种大马士革钢产品,分别为:95x.y奥氏体大马士革不锈钢,也称“首饰钢”,其抗腐蚀能力强,不能淬火,无磁,适于制作餐具、珠宝、表壳、手镯、家具五金件等;96x.y马氏体大马士革枪管不锈钢,硬度可达50HRc以上,特点是韧性高,机械加工性好,有磁性,抗腐蚀性在93、95系列之间,可用于制作高级猎枪、手枪枪管及部件等;92.x.y低合金高硬度大马士革钢,硬度达55HRc以上,其特点是热加工性能好,锻造焊接性好,但抗腐蚀性较差,可用于制作猎枪枪管(适合烤蓝等表面处理)、刀具、伐木斧等。

应用前景广泛

大马士革刀具钢主要用于制作各种形式的刀具:有人用它做猎刀,用来剥皮、割肉,都很好用;也可以做成小巧的折刀,随身携带,遇到割绳子、开纸箱等事情,都可以用它轻松搞定。虽然这些事用普通刀具也能完成,但用大马士革的感觉是不一样的。还有人用它制作传统的长剑,光是钢材成本就要几千元,极尽奢华之能事。

低合金大马士革钢适合制作高档礼品枪。传统的礼品枪往往采用景泰蓝工艺,但由于材质原因,景泰蓝与枪身的结合都不是特别坚固,常常经不起连续射击时的振动,会出现脱落的现象。而使用大马士革钢直接制造枪身的话,不仅使其艺术欣赏性大增,而且也是从冷兵器到热兵器的一种精神传承。

现在,用粉末冶金大马士革首饰钢制成的饰品非常受欢迎。从风格上讲,“大马士革钢”这个名称显示着一种尚武精神,因此更适合男士佩戴。如果一个男士总是穿金戴银的,也许会让人感到少了一些阳刚之气,而佩戴大马士革钢的首饰不会有这种“副作用”。从原料价格来看,粉末冶金大马士革首饰钢和白银的价格相仿,但白银制作产品,边角料收集起来仍然能用,而大马士革钢的边角料就完全成了废铁,因此其成品价格则高于白银。

粉末冶金原理与工艺篇6

模具使用寿命取决于抗磨损和抗机械损伤能力,一旦磨损过度或机械损伤,须经修复才能恢复使用。目前可采用的修复技术有电镀、电弧或火焰堆焊、热喷涂(火焰、等离子)等。电镀层一般很薄,不超过0.3mm,而且与基体结合差,形状损坏部位难于修复,在堆焊、热喷涂或喷焊时,热量注入大,能量不集中,模具热影响区大,易畸变甚至开裂,喷涂层稀释率大,降低了基体和材料的性能。

利用激光熔覆的方法可实现对模具的修复。用高功率激光束以恒定功率P与热粉流同时入射到模具表面上,一部分入射光被反射,一部分光被吸收,瞬时被吸收的能量超过临界值后,金属熔化产生熔池,然后快速凝固形成冶金结合的覆层。激光束根据CAD二次开发的应用程序给定的路线,来回扫描逐线逐层地修复模具。由于激光束的高能密度所产生的近似绝热的快速加热,对基体的热影响较小,引起的畸变可以忽略,特别是经过修复后的模具几乎不需再加工。

1 激光修复系统

激光修复技术是集高功率激光、计算机、数控机床、CAD/ CAM、先进材料、数控技术等多学科的应用技术。修复系统主要由硬件设备和制造过程软件组成。硬件设备包括激光器、数控系统及工作台、送粉装置、光路系统、水冷装置、保护气系统和在线控制所涉及的数据采集装置。软件系统包括制造零件成型软件擞据通讯和在线控制软件。激光修复过程如图2所示。CO2激光器发出的激光经CNC数控机床Z轴(垂直工作台)反射镜后,进入三维光束成形聚焦组合镜,再进入同轴送粉工作头,组合镜和工作头都固定在机床Z轴上,由数控系统统一控制。载气式送粉器将粉末均匀输送到分粉器的同轴送粉工作头。

模具位于CNC数控工作台X-Y平面上,根据CNC指令,工作台、组合镜和送粉头按给定的CAD程序运动。同时加入激光和粉末,逐层熔敷。在温度检测和控制系统作用下,使模具恢复原始尺寸。为保证熔覆材料(金属粉末)和基体(模具)材料实现冶金结合,以及模具的尺寸精度、表面光洁度和材料性能,需将φ50mm圆形多模1kW-5kW高功率激光束变换成强度均匀分布的圆形光束,光斑尺寸可调(光路系统),并配有水冷系统和光束头气体保护系统,同时需重点考虑同轴送粉装置和现场控制系统的设计。

1.1 同轴送粉装置

稳定可靠的粉末输送系统是金属零件修复质量的重要保证。粉末输送的波动将影响修复的质量。激光修复对送粉的基本要求是连续、稳定、均匀和可控地把粉末送入激光熔池。送粉装置由送粉器和同轴送粉嘴组成。在送粉器的粉斗下部,由于平衡气压的作用形成气固两相流化,并从导管开孔,随载气输送粉末。送粉量由输送气体的压力调节,拓宽了送粉范围,实现从5g/min-150g/min均匀连续可调送粉,送粉精度高达±5。设计的载气同轴粉嘴,消除了气体压力波动引起的4路送粉不均匀,并使工作距离加大,且连续可调。

1.2 模具修复过程的控制

在理论上,熔池温度场决定修复过程的宏观与微观质量,因此在激光熔覆层质量控制过程中,表征熔覆层熔池温度场的实时检测非常重要。采用红外测温技术来检测激光加工区域的温度场,结合温度场标定结果推导出实际的温度场信息,来控制激光器功率输出值以及CNC机床的运动速度,以保持熔池温度稳定,避免零件由于过热或温度不均产生裂纹气孔等缺陷。虚线范围内所示的是比色测温仪,光路系统选用单台相机,切换不同滤色片的单通道图像记录方式。滤光片及其控制保证两个滤光片(804.5nm和894.6n m)交替置于数字相机图像记录光路中,移动响应时间

1.3 激光修复模具工艺参数

激光修复伴随着传热、辐射、固化、分子取相及结晶等物理和化学变化,是个多参数过程。激光功率P、扫描速度、送粉量、熔池温度等都会对其产生影响。因此必须把参数合理地组合,以确保修复工作是在涂覆特性可知的情况下进行。在激光熔敷过程中,如果不采用特殊的工艺过程对基材的热输入量进行控制,将会使熔敷层与基体结合程度不理想,或在熔层表面和熔敷层与基材的过渡区产生裂纹。因此,合理地选择工艺参数是激光熔覆技术用于模具维修的关键因素。

根据物理冶金原理,熔敷材料和基体材料必须加热到足够高的温度才能满足实现冶金反应所无原则的条件,最终形成几何外形规则的熔敷层,见图1,根据经验,应尽可能使熔敷材料加热到较低的温度,这样可以减小熔敷裂纹、畸变倾向,也可避免熔敷材料的烧损和蒸发,需控制熔化材料的熔点(取基体、粉末材料两者最高熔点)Tm+(50-100)℃。参考温度场计逄,理论上P取值为1KW-2KW、为2mm/s-4mm/s可满足上述要求,至于熔覆层表面不平度,可通过调节送粉量实现其最小化。

2.2 试验方法

试验用横流连续波5kW-CO2激光器,光束模式为多模,光斑直径为4mm,基体材料(模具)为5CrMnMo钢,试样尺寸80mm×60mm×10mm,由于Ni合金粉流动性好,与基材相结合后表面光洁,价格适中,故选用了Ni60镍基合金粉末材料。试验选定激光功率P为1.5kW 。

3 试验结果分析

3. 1工艺参数对模具修复性能的影响

从熔覆层组织可以看出,激光与粉末材料相互作用充分,稀释率适中,在熔覆层内各层间组织与层内组织稍有差别,层内组织均匀细小致密,层间组织较粗大。由此可知,激光修复可以在相当宽的范围内获得组织均匀、细小致密和性能优异的修复层。测量1~3层硬度变化为85HV0.2。

试验结果表明,粉末在与激光相互作用时,如果激光功率P>5kW且扫描速度

3.2 工艺参数对模具修复宏观形貌的影响

试验表明,在P和变化不大时,激光熔覆表面宏观形貌与送粉量关系密切,在其它条件相同的情况下,随的增大,熔覆层宽度有所变化(有变小的趋势),而熔覆层厚度明显增加,接触角加大。完全可以利用调节的方法改善熔覆层表面不平度。

4 结论

在激光修复模具过程中,通过理论计算并结合试验,在工艺参数P=1.5kW, gs1 =3.2mm/s ,=310mg/s,熔覆层厚度1mm~2mm,可以得到较理想的表面质量。为防止出现裂纹,可以对模具进行200℃×2h的预热处理。在修复过程中可以使用氢气侧吹保护激光熔覆部位。实际用于模具修复需要借助于激光修复系统的控制部分,不断调节送粉量,克服熔覆层表面的凹凸不平。

粉末冶金原理与工艺篇7

已知粉末冶金工艺的一种特异特性,是零件中的连通孔隙可产生相当大的毛细力。尽管毛细作用会把熔化的钎料吸进设计的必要的连接间隙,但孔隙的毛细力一般太大,很快就会将钎料从连接界面吸走。孔隙网络起着将填料金属吸进零件容积内的管道作用,这可能导致连接处填料金属不足。为此孔隙总是烧结钎焊中的一个难题。解决此问题的一种选择,是钎焊前进行铜熔渗,从而可将多孔性体完全充填。可是,这种方法不但效率低而且可能成本过高。

另一种方法是将零件生坯压制到密度高于7.2g/cm3,也可防上熔渗[4]。可是,短距离熔渗对提高结合强度可能是有利的,在较高密度下,表面孔隙的封闭可能会完全阻止这种情况发生。这样做,结合强度可能比预期的要小。

因此,粉末冶金钎焊需要能够部分熔渗,而大部分保持在预定的间隙中以形成牢固结合的特种填料合金。已确立的钎焊合金,Ancorbraze 72,是专门为粉末冶金产业此项用途而设计的,在短距离熔渗后即固化。这可防止钎料材料过分损失在零件容积内,留下足够的填料合金以实现母体表面间的牢固金属结合。这一机制出现在钎料材料与铁基体溶解而产生熔化钎焊材料的液相线温度升高时。随着液相线温度升高,表面张力增高,流动性降低,使钎料合金难以进一步渗入,最终在或接近烧结温度处固化。从原理上讲,这些就是用钎焊连接粉末冶金零件的工序,尽管如此,它并不总是一种顺利、可控的工艺,因为有许多外部参数会影响其性状。

尽管粉末冶金烧结焊接已在成功地应用,但似乎有许多随机事件发生,当钎料材料在合金与铁熔化时未能及时封住接近零件表面的孔隙时,则会发生过多的熔渗。从图1(a)可看出一个合格的钎焊连接的实例,展示出的间隙中有足够量的填料合金,母体表面有最小熔渗,这可能具有适度的连接强度。

与此相反,图1(b)示出在连接处两侧都有过多的熔渗,较亮的相是富集的钎料合金。由于熔渗太多,剩余的填充间隙的钎料材料量不足。这种现象并不总是容易理解的,当制造过程中出现这种情况时,都要下很大力气去解决它。大家知道,一些零件制造商用在钎料预混合粉中添加少量铁粉以防止表面腐蚀,通常用液相处理,可能会抵消过多熔渗。以前支持这种方法的研究工作表明,在钎料预混合粉中添加铁粉将影响固化温度的起始,或许会影响熔渗程度[5,6]。

在进 行 钎 焊 时 已 确 立 了 许 多 要 遵 循 的的 准则[1,6,7]。一个关键因素是气氛组成,并且在烧结的每一阶段都须要严格控制。当零件在预热带时,最重要的是要轻微氧化以促进有效脱出剂而不会熏黑。进入高温加热带的残留在表面上的污染物,可能对有不良影响,阻碍钎料合金流过间隙。如果预热带的气氛过分氧化,钎料合金组成可能被氧化。在这种场合,在高温加热带可能不会充分还原钎料材料,或者钎料材料被焊剂改变使着可适当润湿与流动。钎料表面的绿色表示是过度氧化的迹象[1]。当装炉量改变与发送零件速度变化时,可能需要调整气氛。烧结时的另外一个因素涉及到零件的加热温度分布,鉴于较高温度可将钎料材料由较冷区吸走,故零件的温度不均匀可能会导致钎焊合金不规则的流动。这可能会形成不均匀的钎焊连接。另外,加热速度慢可能促使钎料合金的低熔点成分从钎料中析出,在与铁合金化后很快再凝固,阻止剩余的钎料流入间隙[2]。

液态钎料有效地润湿母体材料,常常是成功进行钎焊作业的关键。表面氧化物会阻止钎料合金在表面上的散布,在钎料通过连接处进行虹吸之前,必须将其清除[8]。因此,关键是要含有一种焊剂以溶解钎料与母体材料二者的表面氧化物,在表面张力减小时,促使钎料润湿与展开。在使用焊剂时,会在放置钎焊片处留下含金属氧化物(代表性的为Mn或Si氧化物)的玻璃质残渣。残渣一般是粘着的,也有实例表明,如果不除去,使用时会剥落。因而,习惯的做法是,在零件设计中包含有盲孔或封闭的空洞用来保持残渣,防止在使用时干扰活动件。如果使用钎焊时,采用开孔设计,可推荐采用像洗涤、化学浸蚀或研磨作用使残渣松散去除类似玻璃的焊剂残渣的方法,尽管如此,在烧结钎焊时,在钎料中添加焊剂是必要的,除非生产是在真空室中进行。

在历史上,烧结钎焊大多在炉中用吸热气氛与Ancorbraze 72进行的,因为这种主要钎焊合金是为在这种气氛中使用而设计的。吸热煤气的典型组成为20%~30%CO,30%~40%H2,40%~47%N2,1%水蒸气及0.5%CO2和能够根据要求的效应调节露点与碳势。这些年来,许多烧结炉为了经济效益而转向采用干燥、贫弱气氛(体积分数)90%N2-10%H2。面临的难题是,气氛组成已改变,这导致钎焊性能不可预知,却必须提供始终如一的钎焊结果。为了更好地了解钎焊合金与影响钎焊性状的工艺参数,进行了以下研究以定性地评估钎焊合金的熔化与凝固的性状,和在预混合粉中如何添加铁来改变其在贫弱烧结气氛中的相互作用。

1 方 法

这项研究使用的钎料合金,是水雾化法生产的Ancorbraze 72,其标称组成(质量分数)为:

41%Ni,40%Cu,15% Mn,1.8%Si,1.5%B。用于压制圆片的是市场上可买到的粒度分布为425μm/+75μm的。添加0.75%Acrawax剂制成预混合粉,在20 MPa下压制成圆片,每个圆片重0.85g。将钎料圆片置于直径1英寸基体压坯之上,在Abbatt高温连续带式烧结炉中于1 120℃下烧结,测定了钎料的润湿性状。将基体压坯压制到密度7.0g/cm,其组成是由市场可实到的Ancor-steel 1000B铁粉,Acu Powder 8081铜粉及Asbury3203H型石墨。表1列出了所有可能组合的评价参数。另外,在第二次发送的钎焊小片测定生坯表面或烧结表面的影响前,一组基体压坯在90%N2-10%H2中进行过预烧结。烧结后用目视检查钎焊小片的残留物,观察所列不同参数的影响

作为对润湿性状研究的观察结果,进一步研究了基体压坯中石墨含量的影响。铁基混合粉(质量分数)是由2%Cu粉与三种石墨含量0.3%,0.6%,0.8%制成的。钎焊连接是由这些混合粉压制到密度7.0g/cm3的,尺寸为1.25in×0.25in×0.5in的矩形生坯试条叠加构成的。顶端的试条中央钻有孔,以便放置一小片钎料。将试样在1 120℃,于90%N2-10%H2气氛(体积分数)中进行了烧结钎焊。为了在零件间形成间距,将顶端试条的一面压制成为倒斜边的,以在上、下试条间形成0.076~0.127mm的间隙。将试样在垂直于连接面的方向切开,随后依照标准金相法进行镶样与抛光以便获得光学图像。另外,用自动图像分析仪测定了横穿烧结钎焊连接区的孔隙分布和自钎焊连接处中心线距离的关系。

此外,用差热分析(DTA)对钎料的熔化与凝固性状及其与铁 的相互作 用进行了评估。用STA449Jupite在40ml/min的流动的氮气氛中在氧化铝坩埚中对代表性试样同时进行了热重-差热分析。温度曲线包括以20℃/min冷却到600℃之前,以20℃/min由25℃升温到1130℃,保温5min。以将细铁粉混进钎料预混粉的方式研究了铁进入钎料合金溶液中的影响。另外,用模拟典型零件组成进行的烧结钎焊的DTA,检验了FC-0208预混合粉层间的钎料。

2 结果与讨论

2.1 润湿研究的观察

图2示润湿研究的烧结试样。这里并未展示所有的观察,除非另有说明,只是用在90%N2-10%H2气氛中的FC-0208基体压坯组成说明一般趋势。在第一排,增大焊剂的量对表面展开或熔渗的影响好像微不足道,在每种情形下熔渗都是过多了。对钎料添加质量分数为10%细铁粉,顶部的残留钎料量增多,可是,对展开似乎无影响。在第二排为添加质量分数为3%焊剂与使用不同的气氛。在每种情况下,都是熔渗显著。与100%H2的结果相比,添加CH4与CO的似乎残留在表面上的残渣较多。底下一排改变了基体压坯的组成。基体压坯中不添加石墨,钎料合金的表面展开显著,而很小熔渗。不添加铜,加大石墨量,提高了对基体压坯的熔渗。另一种方法,当基体压坯进行预烧结时,在所有的试验条件下,大多数钎料材料都残留在表面上。由这项研究可得出的几个关键结论:

(1)基体材料中的石墨对钎料润湿的性状有强烈影响。在压坯中添加石墨会导致熔渗增强,从而减少了用于在表面上展开的材料。不添加石墨的压坯,在表面上展开的量最大。尽管减少石墨可减小熔渗,但在制造粉末冶金零件中这并不是可行的选择,因为需要用石墨来提高强度和达到所需要的性能。

(2)对压坯进行预烧结对防止熔渗虽有显著影响,可是,这种方法在制造调整中在经济上可能是行不通的。

(3)在钎料预混合粉中添加细铁粉,好像会导致熔渗到压坯中的量减小,正进一步研究这种相互作用。

(4)在所有试验条件下,添加焊剂都是需要的,可溶解表面的氧化物和促进表面润湿;关于钎料在表面上如何流动,与3%(质量分数)焊剂相比,将焊剂增大到5%(质量分数)似乎并未看出改善。在实验室的条件下,增加焊剂含量没有看出有任何好处,而可能进一步受到满载生产炉的影响。

(5)基体材料中的铜粉,对烧结前试样生坯的表面润湿没有影响。压坯的预烧结会导致对含0~2%(质量分数)铜的钎料表面展开略有改进。这种性状暗示,在铁表面溶解的铜会减小与铁接触的钎料的润湿角,使其更成功地合金化,从而阻止熔渗,而促使代之以展开。

(6)在钎料预混合粉中添加石墨有不良影响,完全阻止钎料颗粒聚集与润湿压坯表面。这暗示,在炉子预热带产生的任何残渣与烟黑,都会大大阻止钎料润湿表面与流动,而这与焊剂含量无关。

(7)在这项研究中,在气氛中注入少量(0.5%(体积分数))CO或CH4好像并没有改善润湿性状或防止熔渗。但是,在满载的生产炉中,结果可能不同。

2.2 支持的证据

在大多数情况下,不论参数如何,变化通常结果是钎料会熔渗进基体压坯。一个有趣的观察(本实验的整个的持续趋势)是,由于减少石墨含量,钎料材料在表面上的展开会增大,这与熔渗正相反。为进一步研究基体材料中石墨含量的影响,利用混合有不同石墨含量的基体试条,进行了钎焊连接。

2.2.1 石墨的影响

如图3所示,对利用压制到7.0g/cm3的基体材料FC-020X(X=碳含量)制取的烧结钎焊试条进行了对比。(a)是烧结体碳含量w(C)为0.28%的,钎焊连接处很清晰。请注意,零件中的熔渗是最小的,因为早在熔渗之前就将孔隙网络封堵了。(b)的基体材料烧结体碳含量w(C)为0.55%,在将孔隙封堵之前,钎料合金就已更深地流入零件中。(c)的烧结体碳含量w(C)为0.72%,零件表面与钎焊连接处间的界面更模糊,这是因为由原始表面溶解的铁量增多,钎料材料更进一步熔渗进毗连的零件中。在w(C)=0.72%烧结体碳水平下钎料似乎进一步熔渗进了开孔网络,但这并不意味着发生了过多熔渗,因为连接处依然完全充满钎料材料。值得注意的是,连接处的显微结构形态由于使较多钎料合金熔渗进零件而发生了变化。迄今,尚未试验测定过这种显微结构变化对连接处强度的影响。但是认为,需要钎料合金对基体材料进行一些熔渗,以促进较均匀的金属结合,见图3(c)。为支持增大熔渗的目视观测,对图3示的试样用图像分析测定了百分率孔隙度和自估计的钎焊连接处中心线的距离的关系。这些测量结果示于图4。已知基体零件的平均起始孔隙度约为11%,孔隙度水平应增加到距离钎焊作用远处的值。对于w(C)=0.28%烧结体碳的合金化零件,在距中心线300μm以内,孔隙度水平就很快升高到了基体零件的孔隙度水平,这说明很少发生熔渗。这种测量与上面的目测结果很一致。在达到基体试条的标称孔隙度水平之前,基体零件的较高的碳含量,会导致熔渗深度稍有增加,如测得的自中心线的较大距离为440~500μm所表明的。这些结果表明,碳含量影响钎焊连接处的形成,并且可能影响熔渗程度。但是,还不十分明了碳含量是如何具体地改变润湿性状的,是通过帮助减少表面的氧化物还是控制了熔化钎料的表面张力,阻止它与铁表面的密切接触。熔渗随着碳含量增加而增强,这种迹象表明,钎料一开始是不能与铁合金化的,因此才能不断地被吸进多孔性体中。

2.2.2 铁的影响

另外一个值得注意的观察是,润湿研究的结果是添加少量细铁粉对残留在压坯表面上的钎料数量的影响。为了进一步研究钎料与铁的相互作用,用DTA研究了熔化与凝固的性状。如图5(a)所示,钎料粉末+3%焊剂(质量分数)加热时的典型DTA曲线表明,约在935℃开始熔化,在约1 060℃完全熔化。但是,这一结果并没有考虑到像粉末冶金零件烧结-钎焊时所经受的与铁或与其他成分的相互作用。为了研究钎料合金与粉末冶金钢表面的相互作用,在钎料预混合粉中添加了少量铁粉,然后予以混合。如图5(b)所示,不管预混合的铁含量如何,开始的熔化温度依然未变,这是因为在较低温度下初始钎料组成未发生变化。可是当与Fe极接近很明显的合金开始熔化时,液相就会局部地将铁溶进与钎料的溶液中。这种现象将熔化范围扩展到较高温度,对添加质量分数2%与5%(质量分数)铁粉者,这是明显的。添加20%铁粉时,熔化性状发生明显变化,加热到1 130℃时扩展的范围好像超出了测量的范围。当接近1 130℃时,曲线的下降斜率表明,并没有完全熔化,因为其已达到了典型烧结温度。尽管没有示出,但以后的试验证明,添加20%铁粉时,在约1160℃才能接近完全熔化。考察图5(c),在由1 130℃冷却时,仅只钎料的凝固开始 (冷却时的初始放热峰)约在955℃,于830℃完成。这表明,如果钎料不与铁合金化,则在烧结时钎料合金可在一段时间内呈液体状态,这可能导致熔渗。在这些条件下,凝固时有两个独立的峰存在,这表明有两相存在。在预混合粉中添加铁粉,在烧结钎焊的过程的冷却阶段的作用是相当明显的,突显出在钎料熔化与溶解铁时产生的合金化机制的重要性。钎料的开始凝固温度随着溶液中铁的添加而显著升高。预混合的铁粉为2%时,凝固开始的温度升高到1 010℃,添加5%(质量分数)铁粉时,温度升到1 045℃。凝固相的数目是由于溶于溶液中的铁,随着Fe外加的尽管有小的峰值曲线变化。有趣的是,在固溶体中的Fe含量w(Fe)为20%时,合金的主要组分的初始凝固温度就接近于典型的烧结温度。这表明,当含有钎料的溶液的铁含量一旦接近或大于20%时,钎焊合金液体的主要组分就将在烧结温度下凝固。如在图3(a)所看到的,钎焊连接处的显微结构的EDS分析表明,在整个连接区固溶体铁的含量相似。这些DTA结果与先前的关于用添加铁对改变钎焊合金的熔化与凝固性状的影响的研究[5,6]很一致。这也暗示,对钎料预混合粉添加少量铁粉也可能是避免熔渗的一个机会。通过使铁与熔化的钎料邻接,为封闭孔隙从母材溶解的Fe就会减少。这有双重作用,由于因铁溶解,可防止浸蚀零件表面,并在钎焊过程中很快地提前进行封孔,可防止显著熔渗。实际上在烧结温度下,钎料是连续熔化的,在20%溶解铁的情形下,这表明,它可能对流动性有相当大的影响。钎料的流动性相当大地影响其被吸进连通孔隙或易于虹吸到整个间隙中的能力。自然设计的原理如下:由于溶解铁的含量增高,钎焊合金在熔渗进零件短距离后凝固,这可防止连接区材料的进一步损失。相反地,如果钎料不能与铁合金化,在升高的温度下液体越来越多,较大的可能熔渗到多孔性体中更大的距离,遗留下的材料不足以形成强固的连接。为进一步研究涉及典型材料烧结钎焊的机制,用DTA与钎料相结合研究了FC-0208及FC-0208+钎焊合金的组成。图6(a)示FC-0208粉末的基本曲线,在850~860℃左右开始α-γ产生相变,和在930℃左右碳完全溶解。混入的铜在约1 083℃熔化,达到烧结温度时完全变为液体。将钎料加在两层FC-0208混合粉之间(在氧化铝坩埚中),可说明各种成分间的相互作用,当有钎料存在时,虽然α-γ相变好像移向较高温度,但还不清楚这是否只是加热速度的影响,或者是否钎料对变动有什么影响。另外,钎料的熔化趋势的性状与添加20%铁粉(质量分数)的钎料预混合粉(见图5(b))相同。钎料达到铜熔点时可能还在连续熔化,因为铜的拐点被遮掩了。由图6(b)可见,FC-0208的冷却曲线表明发生反应都是在变化的,这表明,在冷却阶段开始前液体铜已溶解到铁中。可是将钎料材料添加于混合粉中后,一个相开始于约1 060℃在1 000℃结束。与图5(d)示的结果相对比,这表明凝固起始的铁含量w(Fe)在5%~20%之间。进一步用添加10%铁粉(未示出)进行的检验表明,铁含量w(Fe)接近10%时,如同凝固起始温度约为1055℃的结果所表明。

3 结 论

粉末冶金原理与工艺篇8

着重论述钨铜复合材料的制备方法,并探讨钨铜复合材料制备技术发展趋势。

关键词: 钨铜复合材料;制备技术;制备方法

中图分类号:TB331 文献标识码:A 文章编号:1671-7597(2012)0210146-02

所谓钨铜复合材料,是指以高熔点与高硬度的钨,结合以高塑性、高导电导热性的铜粉作为原料,运用粉末冶金技术而制备出来的一种复合型材料。这种材料具有较高的导电导热性,良好的耐电弧侵蚀性与抗熔焊性,较高的强度与硬度等众多优势,被广泛地应用于开关电器、电加工电极、电子封装及高密度合金等产品之中。由于钨铜复合材料的运用范围正在变得越来越广阔,这在客观上对于钨铜复合材料之设计与制备提出了新的更高的要求。

1 钨铜复合材料制备技术的发展现状

鉴于现代科技的高速发展,对于钨铜复合材料所具有的性能也提出了新的要求,那就是致密度和散热率要高,导电导热要好等等。但是,传统粉末冶金与熔渗法所制备的钨铜复合材料已无法满足以上要求。纳米钨铜复合材料因为具有众多传统钨铜复合材料所难以比拟的性能。比如,可以提高钨铜复合材料的固溶度,极大地提高烧结的活性,并且降低烧结的温度,提升烧结的致密度,以上这些均将提高钨铜复合材料的性能。因为纳米技术在快速发展,所以在纳米钨铜复合材料在制备方法上出现了新的突破,比如,功能梯度、剧烈塑性变形等被运用在钨铜复合材料制备上,使钨铜复合材料制备技术有新的发展。

2 钨铜复合材料的制备方法

2.1 普通烧结法

这种方法属于传统意义上的粉末冶金制备方法。其制备步骤如下:一是要把钨粉与铜粉进行称量与混合,随后再压制成形与烧结。普通烧结法的工艺较为简单,成本偏低,然而这一烧结方式因为温度较高,所以容易出现钨晶粒较为粗大之问题,因而难以获得成分均匀的那种合金。通过实施机械合金化,能够让粉末在压制与烧结之前得到原子级标准上的均匀与混合。这种在钨粉中有铜粉存在的一种复合粉,在稍微高于铜熔点之上的温度在短时间内烧结,就能得到94%以上致密度的钨铜复合材料,特别是适合低铜含量的钨铜材料之制备。因为超细粉末的表面活性较高,能够在较低的烧结温度上与较短的烧结时间条件内来得到致密化。把钨铜粉末的原料在高温之下进行氧化以后,通过三至六个小时的高能球磨,再在630℃的条件下还原以得到0.5μm之下均匀分散的一种钨铜复合粉。把这种复合粉在1200℃的高温烧结60分钟之后得到钨铜合金,致密度达到了99.5%。因为普通烧结设备的要求并不够高,而且工艺相对较为简单。因此,这一方法所制备的钨铜材料只能运用于对于材料性能要求并不高的一些地方。

2.2 熔渗法

这一方法的制备步骤如下:先那钨粉或者添加混有少量引导铜粉的钨粉制作成为压坯,随后在还原气氛或者真空当中,在900℃至950℃的条件之下进行预烧结,从而得到相当强度的多孔钨骨架。把块状铜金属或者压制好的铜坯放在多孔钨骨架之上或者之下,在高于铜熔点之上的温度实施的烧结被称之为熔渗,而把多孔钨骨架全部浸没于熔点比较低的铜熔液之中所得到的致密产品办法就是熔浸。铜熔液在多孔钨骨架毛细管的作用用,通过渗入钨骨架中的孔隙当中,从而形成了铜的网络分布。熔渗密度一般的理论密度为97%至98%,由于烧结骨架当中总是会存在着非常少的封闭孔隙无法为熔渗金属所填充,而在熔渗之后还可通过冷加工与热加工进一步地提高材料的密度。当前,这一种工艺方法已经被一些大、中型高压断路器与真空开关钨基触头生产当中得到运用。但是,熔浸法的工艺技术难度相对较高,所得到的触头材料成分较为均匀,而且性能也比较好。

2.3 热压烧结法

热压烧结法又被之称为加压烧结法,也就是将粉末装到模腔之中,并在加压同时让粉末能够加热到正常的烧结温度或者更低一些的温度。在通过比较短时间的烧结之后,能够得到致密而且均匀的制成品。热压烧结法是把压制与烧结这两道工序在同时加以完成,并能在比较低的压力之下快速得到冷压烧结状态之下所难以得到的密度。然而,热压烧结工艺对于模具的要求比较高,而且耗费比较大,而单件生产的效率又相对较低,所以,在实际生产中并不是经常用到的。比如,在1800℃下的炉膛压力是18N/mm3,在2h的条件之下获得的材料理论密度达到了94.6%,而富铜端的铜含量最高值是22.55vo1%。对于钨铜复合材料来说,热压烧结法还需要得到氢气保护或者真空烧结,因此生产的成本比较高。

2.4 活化烧结法

一般来说,为了加快钨铜复合材料在烧结当中的致密化进程,完全可通过添加其他类别的合金元素这种方法来加以实现。比如,Co与Fe的活化烧结效果是最好的。究其原因就在于Co与Fe 在铜当中的溶解度是有限的,可以和钨在烧结时形成较为稳定的中间相,并且形成大量具有高扩散性的界面层,并且促进固相钨颗粒之烧结。对于W-10Cu材料来说,Fe或者Co含量在0.35%至0.5%之时,它的密度、强度与硬度出现了最佳结果。同时,加入到活化剂之中的方式具有多样性。把钨粉直接加入到含有活化剂离子的盐溶液当中,随后在低温之下进行烘干,从而能够得到表面较为均匀的活化剂所覆盖的钨颗粒。其后,再对已经经过化学涂层处理的粉末压坯加以烧结,从而得到了致密度达到97%的复合材料。然而,活化剂之加入也就相当于引入了杂质元素,从而导致材料在导电与导热之时的电子散射作用有所增加,而且明显地使钨铜复合材料所具有的热导性与电导性有所下降。有鉴于此,采取活化烧结法制备的钨铜复合材料所具有的最大不足就是降低了钨铜材料所具有的导电性与导热性。然而,因为这一方法较为简单,而且生产成本偏低,对于一些性能要求相对较低的钨铜产品依然具有一定的生命力。

2.5 注射成形法

通过注射成形法所生产出来的钨铜复合材料主要有以下两种方法:其一是运用钨铜混合粉加以注射成形,其后再进行直接烧结。比如,在对纳米钨铜复合粉实施注射成形所得到的W-30Cu的主要参数所进行的研究。通过开展实验,就能得到粉末填充量是体积分数为45%至50%的注射成形坯,而且直接烧结之后的成品密度要高于96%。其二是首先注射成形钨坯,随后再通过熔渗进行烧结,比如,在对质量分数分别为10%、15%、20%的钨铜材料实施注射成形,粉末填充量的体积分数达到了52%,在经过了两步脱脂之后,在1150℃的高温下预烧结钨坯30分钟,最后再在1150℃的高温下熔渗5分钟,其中,W-15Cu在熔渗之后的致密度就达到了99%。对于钨铜复合材料而言,通过注射成形的最大优势就在于大批量地生产小型而复杂的零件或者细长的棒材。

2.6 功能梯度法

对于钨铜功能梯度材料所进行的研究,主要来自于传统均质材料所难以满足的高功率等条件。钨铜功能梯度材料的一端可以是高熔点与高硬度的钨或者高钨含量的钨铜复合材料,而另一端则是高导电性、导热性、可塑性的铜或者较低钨含量的钨铜复合材料,而中间则是成分进行连续变化的一个过渡层。这样一来就能较好地缓和因为钨和铜的热性能不相匹配而导致的热应力,这在整体上具有比较好的力学性质与抗烧蚀性、抗热震性等各种性能。据报道,可以运用热等静压扩散连接等方法,把不同组织的钨铜复合材料结合成为功能梯度材料。同时,一部分特殊成形工艺也能实现的成分梯度进行分布。比如,进行等离子喷涂,开展激光熔覆,实施电泳沉积与离心铸造等等。功能梯度之中心在于材料所具有的功能梯度设计进行优化,因而可以借助于数学计算方法与计算机分析软件进行辅助实施。

2.7 剧烈塑性变形法

这种方法完全是近年来逐步地发展起来的,是一种十分独特的运用超微粒子,即纳米晶、亚微晶等金属及其合金材料所制备出来的工艺。它在材料当中处在相对比较低的温度环境之中,一般是低于0.4Tm。在比较大的外部压力作用之下,可以发生较为严重的塑性变形,从而实现材料晶粒尺寸的细化至亚微米级或者纳米量级,这一方法具备十分强烈的细化晶粒之能力,甚至还能把晶体加工成为非晶体。当前,学术界研究比较多的剧烈塑性变形法主要有以下方法,比如,累计轧合的方法、等通道角挤压的方法、高压扭转的方法。其中,高压扭转法的重要装置由模具与压头组合而成,其一端是固定的,而另一端则是运动的,试样会被放置在模具当中,其后再靠近压头与模具,在数个GPa压力之下进行扭转变形。试样在压头旋转所产生的剪切力的影响之下,材料沿着半径方向上的不同位置进行晶粒细化的速率是不一致的,材料边缘部分的晶粒细化速率是最快的,在达到了一定的尺寸之后就不再细化,材料组织主要是沿着半径朝中心方向不断细化,一直到样品组织更加地均匀。尽管材料中的心位置理论应变量还是零,但是因为受到了四周材料之带动,其上、下部分也出现了旋转剪切的变形,所以,中心位置晶粒同样也被细化了。通过实验研究,对于原始钨晶粒的尺寸是2至10μm,而且晶粒的分布不均匀的W-25%Cu,运用高压扭转的方法。W-25%Cu的试样直径达到了8mm,其厚度则是0.8mm,所施加的压力是8GPa。总而言之,当应变比较小,即小于等于64之时,温度之变化对于显微结构之影响并不是十分明显的。一旦应变比较大,也就是大于64时。温度对于显微结构之影响也就比较大了。在室温情况下,当应变比较小时,也就是小于等于4时,只有很少量的钨晶粒出现了断裂,并且形成了少量塑性的变形带。但是,随着应力的不断增加,这种塑性变形也得到了进一步的增加,局部塑性变形带与钨颗粒的断裂也在增加。一旦当应变增加到64之时,钨晶粒就会被拉长,而且和剪切面形成了一定角度,即0°至20°。虽然复合材料中显微组织的均匀性能十分差,然而当应变增大到了256之时,所观察到的晶粒度则是从10 nm至20nm呈现均匀分布状况的一种钨铜复合材料,这时的晶粒度已达到了一定程度的饱和,也就是说,即使应变还会继续进一步地增加,晶粒也不会再持续地细化下去。

3 钨铜复合材料制备技术发展趋势

笔者认为,新型钨铜复合材料的制备肯定会朝着更高性能的趋势发展下去。虽然一些新技术因为设备与成本等各种因素的制约,还处在实验室研究状态之中,尚未真正达到可以进行规模化生产的状态,但是这一技术的发展前景是可靠的。一是粉末制备技术。比如,热气流雾化与热化学法等先进的制粉技术有希望在制备纳米钨铜复合材料中得到新的突破。前者能够增长金属液滴在液相之中的时间,导致粉末能够经过二次雾化而极大地提升雾化效率,从而容易得到更加细密的粉末粒度,而后者的优势主要是易于实现混合粉所具有的高分散性以及超细化。二是粉末压制技术。随着近年来德国Fraunhofer研究所已经制成了流动温压技术。这一技术在传统冷压工艺的基础之上,以相当低的成本制成高密度、高性能的粉末冶金方法,然而,在关键技术与工艺上还需要进一步加以完善。

4 结束语

综上所述,作为一种十分重要的粉末冶金复合材料,钨铜复合材料因其具备了很多优秀性能而倍受关注,并得到了广泛的运用。但是,在常规的熔渗与烧结条件之下,钨铜复合材料因为受到了两种金属之间互不溶性、低浸润性等影响,由此而导致其致密化的程度、组织结构的分布、成分、形状及尺寸控制等均无法实现理想化的状态。鉴于现代科技的进一步发展,一些新型技术的引进,获得综合性能更好的高致密性钨铜复合材料已经具有现实可能性。笔者坚信,这肯定会进一步拓展钨铜复合材料的应用范围。

参考文献:

[1]周武平、吕大铭,钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005(1).

[2]高娃、张存信,钨铜合金的最新研究进展及应用[J].新材料产业,2006(2).

[3]刘孙和、郑子樵,热化学方法制备钨铜合金及性能研究[J].硬质合金,2006(3).

[4]史晓亮,热压烧结制备高密度钨铜合金[J].机械工程材料,2007(3).

[5]王正云,高能球磨时间对钨铜复合材料性能的影响[J].西华大学学报・自然科学版,2007(3).

[6]张喜庆,钨铜复合材料制备及应用进展[J].有色金属,2010(3).

作者简介:

上一篇:环境设计的发展史范文 下一篇:计算机课程入门培训范文